湖北省武汉市江汉区2023-2024学年数学九年级第一学期期末检测试题含答案
展开
这是一份湖北省武汉市江汉区2023-2024学年数学九年级第一学期期末检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,若点在反比例函数上,则的值是,已知则等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知:如图,菱形ABCD的周长为20cm,对角线AC=8cm,直线l从点A出发,以1cm/s的速度沿AC向右运动,直到过点C为止在运动过程中,直线l始终垂直于AC,若平移过程中直线l扫过的面积为S(cm2),直线l的运动时间为t(s),则下列最能反映S与t之间函数关系的图象是( )
A.B.
C.D.
2.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( )
A.45°B.60°C.75°D.85°
3.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?若设每轮传染中平均一个人传染了x个人,那么x满足的方程是( )
A.B.C.D.
4.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A.①②③④B.①④C.②③④D.①②③
5.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD=8,则OE长为( )
A.3B.5C.2.5D.4
6.若反比例函数的图像在第二、四象限,则它的解析式可能是( )
A.B.C.D.
7.如图,、是的两条弦,若,则的度数为( )
A.B.C.D.
8.若点在反比例函数上,则的值是( )
A.B.C.D.
9.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )
A.B.C.D.
10.已知则( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.已知,且,则的值为__________.
12.如图,直线y=+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.
13.已知△ABC中,AB=5,sinB=,AC=4,则BC=_____.
14.在半径为的圆中,的圆心角所对的弧长是__________.
15.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为_____.
16.对于实数a,b,定义运算“⊗”: ,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣1x+8=0的两个根,则x1⊗x2=________.
17.若正六边形的内切圆半径为2,则其外接圆半径为__________.
18.毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是_______.
三、解答题(共66分)
19.(10分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.
求作:直线AD,使得AD∥l.作法:如图2,
①在直线l上任取一点B,连接AB;
②以点B为圆心,AB长为半径画弧,
交直线l于点C;
③分别以点A,C为圆心,AB长为半径
画弧,两弧交于点D(不与点B重合);
④作直线AD.
所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)
证明:连接CD.
∵AD=CD=__________=__________,
∴四边形ABCD是 ( ).
∴AD∥l( ).
20.(6分)如图,△ABC中,AB=8,AC=6.
(1)请用尺规作图的方法在AB上找点D ,使得 △ACD∽△ABC(保留作图痕迹,不写作法)
(2)在(1)的条件下,求AD的长
21.(6分)已知□ABCD边AB、AD的长是关于x的方程=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?
(2)当AB=3时,求□ABCD的周长.
22.(8分) [阅读理解]对于任意正实数、,
∵,∴,
∴(只有当时,).
即当时,取值最小值,且最小值为.
根据上述内容,回答下列问题:
问题1:若,当______时,有最小值为______;
问题2:若函数,则当______时,函数有最小值为______.
23.(8分)如图,四边形ABCD内接于⊙O,点E在CB的延长线上,BA平分∠EBD,AE=AB.
(1)求证:AC=AD.
(2)当,AD=6时,求CD的长.
24.(8分)如图,在10×10正方形网格中,每个小正方形边长均为1个单位.建立坐标系后,△ABC中点C坐标为(0,1).
(1)把△ABC绕点C顺时针旋转90°后得到△A1B1C1,画出△A1B1C1,并写出A1坐标.
(2)把△ABC以O为位似中心放大,使放大前后对应边长为1:2,画出放大后的△A2B2C2,并写出A2坐标.
25.(10分)如图,与交于点,过点,交与点,交与点F,,,,.
(1)求证:
(2)若,求证:
26.(10分)在一个不透明的盒子中,共有三颗白色和一颗黑色围棋棋子,它们除了颜色之外没有其他区别.随机地从盒子中取出一颗棋子后,不放回再取出第二颗棋子,请用画树状图或列表的方法表示所有结果,并求出恰好取出“一白一黑”两颗棋子的概率.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、D
4、D
5、C
6、A
7、C
8、C
9、A
10、A
二、填空题(每小题3分,共24分)
11、1
12、(1,3)
13、4+或4﹣
14、
15、-1.
16、±4
17、
18、
三、解答题(共66分)
19、BC=AB,菱形(四边相等的四边形是菱形),菱形的对边平行.
20、(1)见图(2)AD=.
21、(1);(2)1
22、(1)2,4;(2)4,1
23、(1)证明见解析;(2)CD=1.
24、(1)见解析, A1(2,3);(2)见解析,A2(4,-6).
25、(1)见解析;(2)见解析
26、
相关试卷
这是一份2023-2024学年湖北省武汉市江汉区常青第一学校数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。
这是一份2023-2024学年湖北省武汉市江汉区度第一期期九上数学期末达标检测试题含答案,共7页。试卷主要包含了如图图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份湖北省武汉市江汉区2023—2024学年上学期九年级期末数学试题,共6页。