湖北省舞阳中学2023-2024学年九上数学期末监测模拟试题含答案
展开
这是一份湖北省舞阳中学2023-2024学年九上数学期末监测模拟试题含答案,共8页。试卷主要包含了点A等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )
A.B.C.D.
2.若关于的方程的解为,,则方程的解为( )
A.B.C.D.
3.下列运算正确的是( )
A.B.
C.D.
4.已知关于轴对称点为,则点的坐标为( )
A.B.C.D.
5.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x,则可列方程( )
A.8(1+x)=11.52B.8(1+2x)=11.52
C.8(1+x)=11.52D.8(1﹣x)=11.52
6.如图,的半径等于,如果弦所对的圆心角等于,那么圆心到弦的距离等于( )
A.B.C.D.
7.点A(﹣3,y1),B(0,y2),C(3,y3)是二次函数y=﹣(x+2)2+m图象上的三点,则y1,y2,y3的大小关系是( )
A.y1<y2<y3B.y1=y3<y2C.y3<y2<y1D.y1<y3<y2
8.在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B (0,3),对称轴是直线x= -1.则下列结论正确的是( )
A.ac>0B.b2-4ac=0C.a-b+c<0D.当-3<x<1时,y>0
9.已知x=1是方程x2+m=0的一个根,则m的值是( )
A.﹣1B.1C.﹣2D.2
10.在一个万人的小镇,随机调查了人,其中人看某电视台的早间新闻,在该镇随便问一个人,他看该电视台早间新闻的概率大约是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,面积为6的矩形的顶点在反比例函数的图像上,则__________.
12.若2是方程x2﹣2kx+3=0的一个根,则方程的另一根为______.
13.函数y=–1的自变量x的取值范围是 .
14.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是______________.
15.在一个不透明的袋子中有1个红球和3个白球,这些球除颜色外都相同,在袋子中再放入个白球后,从袋子中随机摸出1个球,记录下颜色后放回袋子中并搅匀,经大量试验,发现摸到白球的频率稳定在0.95左右,则______.
16.如图,在四边形ABCD中,AB=BD,∠BDA=45°,BC=2,若BD⊥CD于点D,则对角线AC的最大值为___.
17.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是 .
18.如图,一段抛物线记为,它与轴的交点为,顶点为;将绕点旋转180°得到,交轴于点为,顶点为;将绕点旋转180°得到,交轴于点为,顶点为;……,如此进行下去,直至到,顶点为,则顶点的坐标为 _________ .
三、解答题(共66分)
19.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
20.(6分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
请根据图表中所提供的信息,完成下列问题:
(1)表中________,________,样本成绩的中位数落在证明见解析________范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在范围内的学生有多少人?
21.(6分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用、、表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用、表示),参加人员在每个阶段各随机抽取一个项目完成.
(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果;
(2)求小明恰好抽中、两个项目的概率.
22.(8分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).
(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;
(2)求点M(x,y)在函数y=﹣的图象上的概率.
23.(8分)某公司2019年10月份营业额为万元,12月份营业额达到万元,求该公司两个月营业额的月平均增长率.
24.(8分)如图,一次函数y1=x+2的图象与反比例函数y2=(k≠0)的图象交于A、B两点,且点A的坐标为(1,m).
(1)求反比例函数的表达式及点B的坐标;
(2)根据图象直接写出当y1>y2时x的取值范围.
25.(10分)如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.
(1)求A、B两点的坐标及二次函数解析式;
(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:
(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.
26.(10分)问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
类比探究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
(2)△DEF是否为正三角形?请说明理由.
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、D
4、D
5、C
6、C
7、C
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、-1
12、.
13、x≥1
14、48π
15、1
16、
17、1.
18、 (9.5,-0.25)
三、解答题(共66分)
19、(1)证明见解析;(2)阴影部分的面积为.
20、(1)8,20,;(2)见解析;(3)200人
21、(1)见解析;(2) .
22、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).
23、
24、(1)y=,B(﹣3,﹣1);(2)﹣3<x<0或x>1
25、(1)A(﹣,0),B(,0);抛物线解析式y=x2+x﹣;(2)12;(3)(0,),(0,﹣)
26、 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1
相关试卷
这是一份重庆巴蜀中学2023-2024学年九上数学期末监测模拟试题含答案,共7页。
这是一份湖北省枣阳市阳光中学2023-2024学年数学九上期末监测模拟试题含答案,共8页。
这是一份2023-2024学年湖北省黄冈市黄州区启黄中学九上数学期末监测模拟试题含答案,共8页。