湖南省澧县2023-2024学年数学九年级第一学期期末达标检测试题含答案
展开
这是一份湖南省澧县2023-2024学年数学九年级第一学期期末达标检测试题含答案,共7页。试卷主要包含了已知,则的度数是,已知点 P1等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,△ABC内接于圆,D是BC上一点,将∠B沿AD翻折,B点正好落在圆点E处,若∠C=50°,则∠BAE的度数是( )
A.40°B.50°C.80°D.90°
2.如图,PA是⊙O的切线,OP交⊙O于点B,如果,OB=1,那么BP的长是( )
A.4B.2C.1D.
3.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为( )
A.110°B.125°C.130°D.140°
4.下列各式计算正确的是( )
A.B.C.D.
5.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是( )
A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1
C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2
6.已知,则的度数是( )
A.30°B.45°C.60°D.90°
7.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2–x–6=0的一个根,则直线l与圆O的位置关系为( )
A.相切B.相交
C.相离D.不能确定
8.已知点 P1(a-1,5)和 P2(2,b-1)关于 x 轴对称,则(a+b)2019的值为( )
A.0B.﹣1C.1D.( 3)2019
9.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是( )
A.B.C.D.
10.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是( )
A.a>-1B.C.D.a>-1且
二、填空题(每小题3分,共24分)
11.如图,圆锥的底面半径r为4,沿着一条母线l剪开后所得扇形的圆心角ɵ=90°,则该圆锥的母线长是_________________.
12.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.
13.在中,,,,则的长是__________.
14.若x=是一元二次方程的一个根,则n的值为 ____.
15.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是_____.
16.若,则_______.
17.已知点P是正方形ABCD内部一点,且△PAB是正三角形,则∠CPD=_____度.
18.若关于x的一元二次方程x2+2x+m﹣2=0有实数根,则m的值可以是__.(写出一个即可)
三、解答题(共66分)
19.(10分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.
(1)试求出纸箱中蓝色球的个数;
(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.
20.(6分)如图,在中,,,垂足分别为,与相交于点.
(1)求证:;
(2)当时,求的长.
21.(6分)如图,直线分别交轴于A、C,点P是该直线与反比例函数在第一象限内的一个交点,PB⊥轴于B,且S△ABP=1.
(1)求证:△AOC∽△ABP;
(2)求点P的坐标;
(3)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥轴于T,当△BRT与△AOC相似时,求点R的坐标.
22.(8分)如图,已知的三个顶点的坐标分别为、、,P(a,b)是△ABC的边AC上一点:
(1)将绕原点逆时针旋转90°得到,请在网格中画出,旋转过程中点A所走的路径长为 .
(2)将△ABC沿一定的方向平移后,点P的对应点为P2(a+6,b+2),请在网格画出上述平移后的△A2B2C2,并写出点A2、的坐标:A2( ).
(3)若以点O为位似中心,作△A3B3C3与△ABC成2:1的位似,则与点P对应的点P3位似坐标为 (直接写出结果).
23.(8分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)
(1)一套课桌凳和一套办公桌椅的价格分别为多少元?
(2)求出课桌凳和办公桌椅的购买方案.
24.(8分)如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连结AC.求证:△ABC∽△POA.
25.(10分)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).
(1)求这个车库的高度AB;
(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).
(参考数据:sin13°≈0.225,cs13°≈0.974,tan13°≈0.231,ct13°≈4.331)
26.(10分)如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.
(1)求的长.
(2)若点是线段的中点,求的值.
(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、D
5、D
6、C
7、B
8、B
9、D
10、D
二、填空题(每小题3分,共24分)
11、1
12、
13、
14、.
15、.
16、12
17、1
18、3.
三、解答题(共66分)
19、(1)50;(2)2
20、(1)证明见解析;(2).
21、(1)详见解析;(2)P为(2,3);(3)R()或(3,0)
22、(1)画图见解析,π ;(2)画图见解析,(4,4);(3)P3 (2a,2b)或P3 (-2a,-2b)
23、(1)分别为120元、200元(2)有三种购买方案,见解析
24、证明见解析.
25、(1)这个车库的高度AB为5米;(2)斜坡改进后的起点D与原起点C的距离为9.7米.
26、(1) ;(2);(3)当或时,满足条件的点只有一个.
相关试卷
这是一份2023-2024学年湖南省长沙市名校数学九年级第一学期期末达标检测模拟试题含答案,共9页。试卷主要包含了下表是二次函数的的部分对应值,用配方法解方程,方程应变形为等内容,欢迎下载使用。
这是一份2023-2024学年湖南省澧县张公庙中学九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。
这是一份湖南省新化县2023-2024学年九年级数学第一学期期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,是一元二次方程的是等内容,欢迎下载使用。