甘肃省陇南市徽县2023-2024学年数学九年级第一学期期末复习检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.在平面直角坐标系中,正方形,,,,,按如图所示的方式放置,其中点在轴上,点,,,,,,…在轴上,已知正方形的边长为1,,,…,则正方形的边长是( )
A.B.C.D.
2.如图,BC是⊙O的弦,OA⊥BC,∠AOB=55°,则∠ADC的度数是( )
A.25°B.55°C.45°D.27.5°
3.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是( )
A.y=﹣3(x﹣1)2﹣2B.y=﹣3(x﹣1)2+2
C.y=﹣3(x+1)2﹣2D.y=﹣3(x+1)2+2
4.如图,点D,E分别在△ABC的边AB,AC上,且DE//BC,若AD=2,DB=1,AC=6,则AE等于( )
A.2B.3C.4D.5
5.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是( )
A.①②③B.①②④C.①③④D.③④
6.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是
A.相交B.相切C.相离D.无法判断
7.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是( )
A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5
8.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )
A.48 cmB.54 cmC.56 cmD.64 cm
9.如图,矩形矩形,连结,延长分别交、于点、,延长、交于点,一定能求出面积的条件是( )
A.矩形和矩形的面积之差B.矩形和矩形的面积之差
C.矩形和矩形的面积之差D.矩形和矩形的面积之差
10.对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>-1时,y随x的增大而减小,其中正确结论的个数为( )
A.1B.2C.3D.4
二、填空题(每小题3分,共24分)
11.一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共______人.
12.某校有一块长方形的空地,其中长米,宽米,准备在这块空地上修3条小路,路宽都一样为米,并且有一条路与平行,2条小路与平行,其余地方植上草坪,所种植的草坪面积为110米.根据题意可列方程_________.
13.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1 ,
其中正确的是________.
14.点P(4,﹣6)关于原点对称的点的坐标是_____.
15.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.
16.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=_____.
17.在Rt△ABC中,AC:BC=1:2,则sinB=______.
18.从1,2,﹣3三个数中,随机抽取两个数相乘,积是偶数的概率是_____.
三、解答题(共66分)
19.(10分)⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且,求CD的长.
20.(6分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)
(1)分别求出y1、y2的函数关系式(不写自变量取值范围);
(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?
21.(6分)如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC上,AB=3,BC=4
(1)求的值;
(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP
(Ⅰ)求的值;
(Ⅱ)判断CP与AF的位置关系,并说明理由.
22.(8分)化简求值:,其中a=2cs30°+tan45°.
23.(8分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.
(1)甲选择A检票通道的概率是 ;
(2)求甲乙两人选择的检票通道恰好相同的概率.
24.(8分)如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,点C坐标为(﹣1,0),点A坐标为(0,2).一次函数y=kx+b的图象经过点B、C,反比例函数y=的图象经过点B.
(1)求一次函数和反比例函数的关系式;
(2)直接写出当x<0时,kx+b﹣<0的解集;
(3)在x轴上找一点M,使得AM+BM的值最小,直接写出点M的坐标和AM+BM的最小值.
25.(10分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.
(1)求证:EF=ED;
(2)若AB=2,CD=1,求FE的长.
26.(10分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.
⑴求证:BE是⊙O的切线;
⑵若BC=,AC=5,求圆的直径AD的长.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、C
4、C
5、B
6、B
7、A
8、A
9、B
10、C
二、填空题(每小题3分,共24分)
11、1
12、
13、①③⑤
14、 (﹣4,6)
15、
16、3
17、或
18、
三、解答题(共66分)
19、2(cm)
20、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.
21、(1);(2)(Ⅰ);(Ⅱ)CP⊥AF,理由:见解析.
22、,
23、(1);(2).
24、(1)y=﹣x﹣,y=﹣;(2)﹣3<x<0;(3)点M的坐标为(﹣2,0),AM+BM的最小值为3.
25、(1)见解析;(2)EF=.
26、(1)详见解析;(2)1
2023-2024学年甘肃省陇南徽县联考数学九上期末调研模拟试题含答案: 这是一份2023-2024学年甘肃省陇南徽县联考数学九上期末调研模拟试题含答案,共8页。试卷主要包含了对于反比例函数y=,已知,则等于,已知a≠0,下列计算正确的是等内容,欢迎下载使用。
2023-2024学年甘肃省陇南徽县联考数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年甘肃省陇南徽县联考数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
甘肃省陇南市徽县2023-2024学年数学八年级第一学期期末综合测试模拟试题含答案: 这是一份甘肃省陇南市徽县2023-2024学年数学八年级第一学期期末综合测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,某村的居民自来水管道需要改造,平方根等于它本身的数是等内容,欢迎下载使用。