贵州省都匀市第六中学2023-2024学年数学九上期末经典模拟试题含答案
展开
这是一份贵州省都匀市第六中学2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,27的立方根是,已知点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.函数和在同一坐标系中的图象大致是( )
A.B.C.D.
2.如果关于的方程没有实数根,那么的最大整数值是( )
A.-3B.-2C.-1D.0
3.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为( )
A.2B.3C.4D.5
4.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
A.abc<0B.-3a+c<0
C.b2-4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c
5.如图为二次函数的图象,则下列说法:①;②;③;④;⑤,其中正确的个数为( )
A.1B.2C.3D.4
6.27的立方根是( )
A.±3B.±3C.3D.3
7.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是( )
A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2
8.以半径为2的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )
A.不能构成三角形B.这个三角形是等腰三角形
C.这个三角形是直角三角形D.这个三角形是钝角三角形
9.若将抛物线y=x2平移,得到新抛物线,则下列平移方法中,正确的是( )
A.向左平移3个单位B.向右平移3个单位
C.向上平移3个单位D.向下平移3个单位
10. “2020年的6月21日是晴天”这个事件是( )
A.确定事件B.不可能事件C.必然事件D.不确定事件
二、填空题(每小题3分,共24分)
11.如图,请补充一个条件_________:,使△ACB∽△ADE.
12.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.
13.若点与关于原点对称,则的值是___________.
14.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.
15.若关于的一元二次方程有实数根,则的值可以为________(写出一个即可).
16.如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点,.连接,,且.过点作,交反比例函数(其中)的图象于点,连接交于点,则的值为_____________.
17.如图,在平面直角坐标系中,为坐标原点,点在第一象限,与轴所夹的锐角为,且,则的值是______.
18.如图,在中,,是三角形的角平分线,如果,,那么点到直线的距离等于___________.
三、解答题(共66分)
19.(10分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).
(1)求抛物线的解析式;
(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;
(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
20.(6分)如图,在△ABC中,∠C=90°,AC=6cm,BC=8m,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动,当其中一点到达终点时,另一点也随之停止运动.
(1)如果点P,Q同时出发,经过几秒钟时△PCQ的面积为8cm2?
(2)如果点P,Q同时出发,经过几秒钟时以P、C、Q为顶点的三角形与△ABC相似?
21.(6分)学校要在教学楼侧面悬挂中考励志的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为,点C的仰角为,求标语牌BC的宽度(结果保留根号)
22.(8分)如图,在矩形中,点为原点,点的坐标为,点的坐标为,抛物线经过点、,与交于点.
备用图
⑴求抛物线的函数解析式;
⑵点为线段上一个动点(不与点重合),点为线段上一个动点,,连接,设,的面积为.求关于的函数表达式;
⑶抛物线的顶点为,对称轴为直线,当最大时,在直线上,是否存在点,使以、、、为顶点的四边形是平行四边形,若存在,请写出符合条件的点的坐标;若不存在,请说明理由.
23.(8分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
24.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.
(1)请用树状图或列表法把上述所有等可能的结果表示出来;
(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.
25.(10分)(1)计算:|﹣2|+(π﹣3)1+2sin61°.
(2)解下列方程:x2﹣3x﹣1=1.
26.(10分)如图,把点以原点为中心,分别逆时针旋转,,,得到点,,.
(1)画出旋转后的图形,写出点,,的坐标,并顺次连接、,,各点;
(2)求出四边形的面积;
(3)结合(1),若把点绕原点逆时针旋转到点,则点的坐标是什么?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、B
5、D
6、C
7、B
8、C
9、A
10、D
二、填空题(每小题3分,共24分)
11、∠ADE=∠C或∠AED=∠B或
12、< < >
13、1
14、
15、5(答案不唯一,只有即可)
16、
17、8
18、1
三、解答题(共66分)
19、(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).
20、(1)1s或2s;(1)当t=或t=时,以P、C、Q为顶点的三角形与△ABC相似.
21、BC=
22、(1);(2);(3)点的坐标为,
23、(1)直线DE与⊙O相切;(2)4.1.
24、解:(1)见解析 (2)
25、(1)3;(2)
26、 (1)详见解析, ,,;(2)50;(3)
相关试卷
这是一份2023-2024学年贵州省都匀市第六中学数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图,,则下列比例式错误的是,关于x的一元二次方程x2+,方程的根是等内容,欢迎下载使用。
这是一份2023-2024学年贵州省都匀市第六中学九上数学期末复习检测试题含答案,共8页。试卷主要包含了如果等内容,欢迎下载使用。
这是一份2023-2024学年贵州省都匀市第六中学九年级数学第一学期期末检测模拟试题含答案,共7页。