辽宁省抚顺市望花区2023-2024学年九上数学期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.已知关于x的一元二次方程 x ax b 0 a b 的两个根为 x1、x2,x1 x2则实数 a、b、x1、x2的大小关系为( )
A.a x1 b x2B.a x1 x2 bC.x1 a x2 bD.x1 a b x2
2.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有( )
A.1个B.2C.3个D.4个
3.抛物线的顶点坐标是( )
A.(2, 1)B.(2, -1)C.(-2, 1)D.(-2, -1)
4.在平面直角坐标系中,点P(1,﹣2)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P对应点的坐标为( )
A.(2,﹣4)B.(2,﹣4)或(﹣2,4)
C.(,﹣1)D.(,﹣1)或(﹣,1)
5.如图所示的图案是按一定规律排列的,照此规律,在第1至第2018个图案中“♣”共有( ) 个.
A.504B.505C.506D.507
6.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tanA=( )
A.B.C.D.
7.如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四边形CEGF=S△ABG,其中正确的个数为( )
A.1个B.2个C.3个D.4个
8.关于x的一元二次方程ax2﹣4x+1=0有实数根,则整数a的最大值是( )
A.1B.﹣4C.3D.4
9.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
A.
B.
C.
D.
10.如图,在中,,于点D,,,则AD的长是( )
A.1.B.C.2D.4
二、填空题(每小题3分,共24分)
11.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.
12.如图,已知的面积为48,将沿平移到,使和重合,连结交于,则的面积为__________.
13.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是__________.
14.如图,在Rt△ABC中,∠BCA=90º,∠BAC=30º,BC=4,将Rt△ABC绕A点顺时针旋转90º得到Rt△ADE,则BC扫过的阴影面积为___.
15.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是_______ ,阴影部分面积为(结果保留π) ________.
16.计算:=______.
17.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.
18.二次函数解析式为,当x>1时,y随x增大而增大,求m的取值范围__________
三、解答题(共66分)
19.(10分) [阅读理解]对于任意正实数、,
∵,∴,
∴(只有当时,).
即当时,取值最小值,且最小值为.
根据上述内容,回答下列问题:
问题1:若,当______时,有最小值为______;
问题2:若函数,则当______时,函数有最小值为______.
20.(6分)如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.
(1)当时,求的度数;
(2)求证:;
(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.
21.(6分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.
(1)求反比例函数的表达式
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标
(3)求△PAB的面积.
22.(8分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.
(1)求这个二次函数的表达式;
(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;
(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.
23.(8分)如图,是规格为8×8的正方形网格,请在所给的网格中按下列要求操作.
(1)在网格中建立平面直角坐标系,使点的坐标为,点的坐标为.
(2)在第二象限内的格点上画一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数.求点的坐标及的周长(结果保留根号).
(3)将绕点顺时针旋转90°后得到,以点为位似中心将放大,使放大前后的位似比为1:2,画出放大后的的图形.
24.(8分)如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2).
(1)求反比例函数和一次函数的解析式;
(2)求ΔAOC的面积;
(3)直接写出时的x的取值范围 (只写答案)
25.(10分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?
26.(10分)如图,在中,是高.矩形的顶点、分别在边、上,在边上,,,.求矩形的面积.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、C
4、B
5、B
6、B
7、C
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、小林
12、24
13、
14、4π
15、相切 6-π
16、-1.
17、100(1+x)2=1.
18、m≤1
三、解答题(共66分)
19、(1)2,4;(2)4,1
20、(1)75°;(2)证明见解析;(3)或或.
21、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
22、(1)这个二次函数的表达式是y=x1﹣4x+3;(1)S△BCP最大=;(3)当△BMN是等腰三角形时,m的值为,﹣,1,1.
23、(1)图见解析;(2),周长为;(3)图见解析.
24、(1),;(2)C(-3,0), S=6;(3)或
25、(1)y与x的函数关系式为y=-x+150;(2)该批发商若想获得4000元的利润,应将售价定为70元;(3)该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.
26、
售价x(元/千克)
…
50
60
70
80
…
销售量y(千克)
…
100
90
80
70
…
2023-2024学年辽宁省抚顺市望花区七年级(上)学期期末数学试题(含解析): 这是一份2023-2024学年辽宁省抚顺市望花区七年级(上)学期期末数学试题(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年辽宁省抚顺市望花区七年级上学期期末数学模拟试题(含答案): 这是一份2023-2024学年辽宁省抚顺市望花区七年级上学期期末数学模拟试题(含答案),共7页。
2023-2024学年辽宁省抚顺市望花区八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年辽宁省抚顺市望花区八年级(上)期末数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。