铜陵市2023-2024学年数学九上期末考试试题含答案
展开
这是一份铜陵市2023-2024学年数学九上期末考试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是( )
A.-2B.±4C.2D.±2
2.已知点都在反比例函数的图像上,那么( )
A.B.C.D.的大小无法确定
3.如果两个相似多边形的面积之比为,那么它们的周长之比是( )
A.B.C.D.
4.如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于点A,B,已知点A的坐标为(-2,1),点B的纵坐标为-2,根据图象信息可得关于x的方程=kx+b的解为( )
A.-2,1B.1,1C.-2,-2D.无法确定
5.抛掷一枚质地均匀的硬币,连续掷三次,出现“一次正面,两次反面”的概率为( )
A.B.C.D.
6.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )
A.1∶3B.2∶3C.∶2D.∶3
7.已知△ABC∽△A1B1C1,若△ABC与△A1B1C1的相似比为3:2,则△ABC与△A1B1C1的周长之比是( )
A.2:3B.9:4C.3:2D.4:9
8.在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图像可能是( )
A.B.C.D.
9.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )
A.B.C.D.
10.若二次函数的图象经过点P (-1,2),则该图象必经过点( )
A.(1,2)B.(-1,-2)C.(-2,1)D.(2,-1)
二、填空题(每小题3分,共24分)
11.甲、乙两同学在最近的5次数学测验中数学成绩的方差分别为甲,乙,则数学成绩比较稳定的同学是____________
12.时钟的时针不停地旋转,从上午时到上午时,时针旋转的旋转角是__________度.
13.已知,则的值为_______.
14.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.
15.如图,在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=8,DF=3FC,则BC=__________.
16.已知扇形的面积为3πcm2,半径为3cm,则此扇形的圆心角为_____度.
17.如图,在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC=__________.
18.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF=__________cm.
三、解答题(共66分)
19.(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.
(1)若苗圃的面积为72平方米,求x的值;
(2)这个苗圃的面积能否是120平方米?请说明理由.
20.(6分)富平因取“富庶太平”之意而得名,是华夏文明重要发祥地之一.某班举行关于“美丽的富平”的演讲活动.小明和小丽都想第一个演讲,于是他们通过做游戏来决定谁第一个来演.讲游戏规则是:在一个不透明的袋子中有一个黑球a和两个白球b、c,(除颜色外其它均相同),小丽从袋子中摸出一个球,放回后搅匀,小明再从袋子中摸出一个球,若两次摸到的球颜色相同,则小丽获胜,否则小明获胜,请你用树状图或列表的方法分别求出小丽与小明获胜的概率,并说明这个游戏规则对双方公平吗?
21.(6分)如图,小明在地面A处利用测角仪观测气球C的仰角为37°,然后他沿正对气球方向前进了40m到达地面B处,此时观测气球的仰角为45°.求气球的高度是多少?参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75
22.(8分)如图,在矩形中,,点在直线上,与直线相交所得的锐角为60°.点在直线上,,直线,垂足为点且,以为直径,在的左侧作半圆,点是半圆上任一点.
发现:的最小值为_________,的最大值为__________,与直线的位置关系_________.
思考:矩形保持不动,半圆沿直线向左平移,当点落在边上时,求半圆与矩形重合部分的周长和面积.
23.(8分)在平面直角坐标系xy中,点A (-4,-2),将点A向右平移6个单位长度,得到点B.
(1)若抛物线y=-x2+bx+c经过点A,B,求此时抛物线的表达式;
(2)在(1)的条件下的抛物线顶点为C,点D是直线BC上一动点(不与B,C重合),是否存在点D,使△ABC和以点A,B,D构成的三角形相似?若存在,请求出此时D的坐标;若不存在,请说明理由;
(3)若抛物线y=-x2+bx+c的顶点在直线y=x+2上移动,当抛物线与线段有且只有一个公共点时,求抛物线顶点横坐标t的取值范围.
24.(8分)已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.
25.(10分)某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价(元/千克)与采购量(千克)之间的函数关系图象如图中折线所示(不包括端点).
(1)当时,写出与之间的函数关系式;
(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?
26.(10分)如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′,若反比例函数的图像恰好经过A′B的中点D,求这个反比例函数的解析式.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、A
4、A
5、B
6、A
7、C
8、A
9、D
10、A
二、填空题(每小题3分,共24分)
11、甲
12、
13、
14、2或或.
15、6+1.
16、120
17、1
18、2+
三、解答题(共66分)
19、(1)x的值为12;(2)这个苗圃的面积不能是120平方米,理由见解析.
20、小丽为,小军为,这个游戏不公平,见解析
21、120m
22、, 10 , ;,.
23、(1)y=-x2-2x+6;(2)存在,D (,);(2)-4≤t<-2或0<t≤1.
24、证明见解析
25、(1);(2)一次性采购量为800千克时,蔬菜种植基地能获得最大利润为12800元.
26、.
相关试卷
这是一份铜陵市重点中学2023-2024学年九上数学期末复习检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份铜陵市2023-2024学年数学九上期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,点等内容,欢迎下载使用。
这是一份2023-2024学年安徽省铜陵市枞阳县九上数学期末达标检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。