重庆市九龙坡区西彭三中学2023-2024学年数学九上期末复习检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.把抛物线向右平移个单位,再向下平移个单位,即得到抛物线( )
A.y=-(x+2) 2+3B.y=-(x-2) 2+3C.y=-(x+2) 2-3D.y=-(x-2) 2-3
2.掷一枚质地均匀的硬币次,下列说法中正确的是( )
A.可能有次正面朝上B.必有次正面朝上
C.必有次正面朝上D.不可能次正面朝上
3.在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是( )
A.(−4,−2)B.(2,2)C.(−2,2)D.(2,−2)
4.对于反比例函数,下列说法不正确的是
A.图象分布在第二、四象限
B.当时,随的增大而增大
C.图象经过点(1,-2)
D.若点,都在图象上,且,则
5.如图所示,几何体的左视图为( )
A.B.C.D.
6.数据3、3、5、8、11的中位数是( )
A.3B.4C.5D.6
7.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是 ( )
A.小明:“早上8点”B.小亮:“中午12点”
C.小刚:“下午5点”D.小红:“什么时间都行”
8.一副三角板如图放置,它们的直角顶点、分别在另一个三角板的斜边上,且,则的度数为( )
A.B.C.D.
9.如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:
①⊙O的半径为 ,②OD∥BE ,③PB=, ④tan∠CEP=
其中正确结论有( )
A.1个B.2个C.3个D.4个
10.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值( )
A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和5
二、填空题(每小题3分,共24分)
11.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4 米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.
12.如图,P是反比例函数y=的图象上的一点,过点P分别作x轴、y轴的垂线,得图中阴影部分的面积为3,则这个反比例函数的比例系数是_____.
13.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.
14.如图,AB是⊙O的直径,弦CD⊥AB于E,若AB=20,CD=16,则OE的长为______.
15.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=_________.
16.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的是______________(只填序号)
17.分解因式:x2﹣2x=_____.
18.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.
三、解答题(共66分)
19.(10分)如图,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地上修建公园.其中要留出宽度相等的三条小路,且两条与平行,另一条与平行,其余部分建成花圃.
(1)若花圃总面积为448平方米,求小路宽为多少米?
(2)已知某园林公司修建小路的造价(元)和修建花圃的造价(元)与修建面积(平方米)之间的函数关系分别为和.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?
20.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
21.(6分)(1)计算:.
(2)如图,正方形纸板在投影面上的正投影为,其中边与投影面平行,与投影面不平行.若正方形的边长为厘米,,求其投影的面积.
22.(8分)(1)如图1,在⊙O中,弦AB与CD相交于点F,∠BCD=68°,∠CFA=108°,求∠ADC的度数.
(2)如图2,在正方形ABCD中,点E是CD上一点(DE>CE),连接AE,并过点E作AE的垂线交BC于点F,若AB=9,BF=7,求DE长.
23.(8分)如图,已知是的直径,弦于点,是的外角的平分线.求证:是的切线.
24.(8分)如图1,已知中,,,,它在平面直角坐标系中位置如图所示,点在轴的负半轴上(点在点的右侧),顶点在第二象限,将沿所在的直线翻折,点落在点位置
(1)若点坐标为时,求点的坐标;
(2)若点和点在同一个反比例函数的图象上,求点坐标;
(3)如图2,将四边形向左平移,平移后的四边形记作四边形,过点的反比例函数的图象与的延长线交于点,则在平移过程中,是否存在这样的,使得以点为顶点的三角形是直角三角形且点在同一条直线上?若存在,求出的值;若不存在,请说明理由
25.(10分)定义:在平面直角坐标系中,对于任意两点,,若点满足,,那么称点是点,的融合点.
例如:,,当点满是,时,则点是点,的融合点,
(1)已知点,,,请说明其中一个点是另外两个点的融合点.
(2)如图,点,点是直线上任意一点,点是点,的融合点.
①试确定与的关系式.
②若直线交轴于点,当为直角三角形时,求点的坐标.
26.(10分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.
(1)下列说法:
①摸一次,摸出一号球和摸出号球的概率相同;
②有放回的连续摸次,则一定摸出号球两次;
③有放回的连续摸次,则摸出四个球标号数字之和可能是.
其中正确的序号是
(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、D
4、D
5、A
6、C
7、C
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、1.95
12、-1.
13、2:1.
14、6
15、.
16、①③④
17、x(x﹣2)
18、a≤且a≠1.
三、解答题(共66分)
19、(1)小路的宽为2米;(2)小路的宽为2米时修建小路和花圃的总造价最低.
20、(1)(2,﹣2);
(2)(1,0);
(3)1.
21、(1);(2).
22、(1)40°;(2)1.
23、见解析
24、(1);(2);(3)存在,或
25、(1)点是点,的融合点;(2)①,②符合题意的点为, .
26、(1)①③;(2)
重庆市江津第四中学2023-2024学年九上数学期末复习检测试题含答案: 这是一份重庆市江津第四中学2023-2024学年九上数学期末复习检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
重庆市九龙坡区杨家坪中学2023-2024学年九年级数学第一学期期末质量检测试题含答案: 这是一份重庆市九龙坡区杨家坪中学2023-2024学年九年级数学第一学期期末质量检测试题含答案,共8页。试卷主要包含了若,则的值是等内容,欢迎下载使用。
2023-2024学年重庆市九龙坡区西彭三中学八年级数学第一学期期末达标测试试题含答案: 这是一份2023-2024学年重庆市九龙坡区西彭三中学八年级数学第一学期期末达标测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中,不具有稳定性的是等内容,欢迎下载使用。