银川市重点中学2023-2024学年数学九上期末调研模拟试题含答案
展开
这是一份银川市重点中学2023-2024学年数学九上期末调研模拟试题含答案,共7页。试卷主要包含了下列说法正确的是,关于抛物线,下列说法错误的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.一同学将方程化成了的形式,则m、n的值应为( )
A.m=1.n=7B.m=﹣1,n=7C.m=﹣1,n=1D.m=1,n=﹣7
2.下列图形中为中心对称图形的是( )
A.等边三角形B.平行四边形C.抛物线D.五角星
3.一元二次方程的解为( )
A.,B.C.D.,
4.要使二次根式有意义,则的取值范围是( )
A.B.且C.D.且
5.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有( )
A.1个B.2个C.3个D.4个
6.下列说法正确的是( )
A.所有菱形都相似B.所有矩形都相似
C.所有正方形都相似D.所有平行四边形都相似
7.关于抛物线,下列说法错误的是( )
A.开口方向向上B.对称轴是直线
C.顶点坐标为D.当时,随的增大而增大
8.如果关于x的一元二次方程有实数根,那么m的取值范围是( )
A.B.C.D.
9.如图所示,在平面直角坐标系中,已知点,,,以某点为位似中心,作出的位似图形,则位似中心的坐标为( )
A.B.C.D.
10.在反比例函数的图象中,阴影部分的面积不等于4的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.已知⊙O的内接正六边形的边心距为1.则该圆的内接正三角形的面积为_____.
12.如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_____cm的地方.
13.如图,∠MON=90°,直角三角形ABC斜边的端点A,B别在射线OM,ON上滑动,BC=1,∠BAC=30°,连接OC.当AB平分OC时,OC的长为______.
14.圆锥的母线长为,底面半径为,那么它的侧面展开图的圆心角是______度.
15.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是________°.
16.如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.
17.圆锥的侧面展开的面积是12πcm2,母线长为4cm,则圆锥的底面半径为_________cm.
18.如图,是等腰直角三角形,,以BC为边向外作等边三角形BCD,,连接AD交CE于点F,交BC于点G,过点C作交AB于点下列结论:;∽;;则正确的结论是______填序号
三、解答题(共66分)
19.(10分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).
(1)求证:直线l恒过抛物线C的顶点;
(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.
(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.
20.(6分)如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.
(1)求通道的宽度;
(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.
21.(6分)某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?
22.(8分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.
(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;
(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.
23.(8分)在中,,,,点从出发沿方向在运动速度为3个单位/秒,点从出发向点运动,速度为1个单位/秒,、同时出发,点到点时两点同时停止运动.
(1)点在线段上运动,过作交边于,时,求的值;
(2)运动秒后,,求此时的值;
(3)________时,.
24.(8分)我国于2019年6月5日首次完成运载火箭海.上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为千米,仰角为.火箭继续直线上升到达点处,此时海岸边处的雷达测得点的仰角增加,求此时火箭所在点处与处的距离. (保留根号)
25.(10分)有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.
(1)如图1,BD平分∠ABC,AD∥BC,求证:四边形ABCD为“和睦四边形”;
(2)如图2,直线与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t的值;
(3)如图3,抛物线与轴交于A、B两点(点A在点B的左侧),与y轴交于点,抛物线的顶点为点D.当四边形COBD为“和睦四边形”,且CD=OC.抛物线还满足:①;②顶点D在以AB为直径的圆上. 点是抛物线上任意一点,且.若恒成立,求m的最小值.
26.(10分)如图,Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上一点(0<AD<AB).过点B作BE⊥CD,垂足为E.将线段CE绕点C逆时针旋转90°,得到线段CF,连接AF,EF.设∠BCE的度数为α.
(1)①依题意补全图形.
②若α=60°,则∠CAF=_____°;=_____;
(2)用含α的式子表示EF与AB之间的数量关系,并证明.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、A
4、D
5、B
6、C
7、C
8、D
9、C
10、B
二、填空题(每小题3分,共24分)
11、4
12、8
13、.
14、1
15、
16、(15﹣2x)(9﹣2x)=1.
17、1
18、②③④
三、解答题(共66分)
19、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.
20、(1)5m,(2)20%
21、每辆车需降价2万元
22、(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗.
23、(1)2;(2)或;(3)
24、火箭所在点处与处的距离.
25、(1)见解析;(2)或;(3)
26、(1)①补图见解析;②30,;(2)EF=ABcsα;证明见解析.
相关试卷
这是一份内江市重点中学2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了一人乘雪橇沿如图所示的斜坡等内容,欢迎下载使用。
这是一份2023-2024学年海南省重点中学九上数学期末调研模拟试题含答案,共8页。试卷主要包含了下列方程是一元二次方程的是,若,那么的值是等内容,欢迎下载使用。
这是一份2023-2024学年德宏市重点中学九上数学期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。