重庆市宜宾市中学2023-2024学年数学九上期末经典试题含答案
展开这是一份重庆市宜宾市中学2023-2024学年数学九上期末经典试题含答案,共8页。试卷主要包含了下列说法正确的是,已知,则锐角的取值范围是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如下图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( )
A.B.C.D.
2.下列命题正确的是( )
A.对角线相等四边形是矩形
B.相似三角形的面积比等于相似比
C.在反比例函数图像上,随的增大而增大
D.若一个斜坡的坡度为,则该斜坡的坡角为
3.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=( )
A.B.C.D.
4.如图,将绕点按逆时针方向旋转后得到,若,则的度数为( )
A.B.C.D.
5.下列说法正确的是( )
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是不公平的
C.“367人中至少有2人生日相同”是必然事件
D.四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是.
6.已知,则锐角的取值范围是( )
A.B.C.D.
7.如图,△ABC的顶点都是正方形网格中的格点,则cs∠ABC等于( )
A.B.C.D.
8.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,若∠BAC=20°,则∠ADC的度数是( )
A.90°B.100°C.110°D.130°
9.如图,在正方形网格中,已知的三个顶点均在格点上,则( )
A.2B.C.D.
10.如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的( ).
A.甲B.乙C.丙D.丁
二、填空题(每小题3分,共24分)
11.一组数据:2,3,4,2,4的方差是___.
12.二次函数的最小值是____.
13.如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OC=AC=4,AC交反比例函数y=的图象于点F,过点F作FD⊥OA,交OA与点E,交反比例函数与另一点D,则点D的坐标为_____.
14.若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=_____.
15.已知点、在二次函数的图像上,则___.(填“”、“”、“”)
16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是_____.
17.已知扇形的半径为,圆心角为,则该扇形的弧长为_______.(结果保留)
18.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为_____cm.
三、解答题(共66分)
19.(10分)如图,反比例函数y=(k≠0,x>0)的图象与矩形OABC的边AB、BC分别交于点E、F,E(,6),且E为BC的中点,D为x轴负半轴上的点.
(1)求反比倒函数的表达式和点F的坐标;
(2)若D(﹣,0),连接DE、DF、EF,则△DEF的面积是 .
20.(6分)如图,已知:抛物线交x轴于A,C两点,交y轴于点B,且OB=2CO.
(1)求二次函数解析式;
(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;
(3) 抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
21.(6分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形统计图(如图1)和不完整的扇形图(如图2),其中条形统计图被墨迹遮盖了一部分.
(1)求条形统计图中被遮盖的数,并写出册数的中位数;
(2)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没有改变,则最多补查了____人.
22.(8分)已知,如图,在△ABC中,∠C=90°,点D是AB外一点,过点D分别作边AB、BC的垂线,垂足分别为点E、F,DF与AB交于点H,延长DE交BC于点G.求证:△DFG∽△BCA
23.(8分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C
(1)求证:∠CBP=∠ADB
(2)若OA=2,AB=1,求线段BP的长.
24.(8分)已知,如图,抛物线的顶点为,经过抛物线上的两点和的直线交抛物线的对称轴于点.
(1)求抛物线的解析式和直线的解析式.
(2)在抛物线上两点之间的部分(不包含两点),是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.
(3)若点在抛物线上,点在轴上,当以点为顶点的四边形是平行四边形时,直接写出满足条件的点的坐标.
25.(10分)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
26.(10分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).
(1)求抛物线的解析式;
(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;
(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、D
4、D
5、C
6、B
7、B
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、0.1
12、2
13、 (4,)
14、1
15、
16、-1.
17、
18、
三、解答题(共66分)
19、(1)y=,F(3,3);(2)S△DEF=1.
20、(1)y;(2);(3)(1,-3)或(1,)或(1,1+)或(1,1-)
21、 (1)被遮盖的数是9,中位数为5;(2)1.
22、见解析
23、(1)证明见解析;(2)BP=1.
24、(1)抛物线的表达式为:,直线的表达式为:;(2)存在,理由见解析;点或或或.
25、(2)y=-x2+2x+2.(2)P的坐标(2,2).(2)存在.点M的坐标为(2,),(2,-),(2,2),(2,0).
26、(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).
相关试卷
这是一份鲍沟中学2023-2024学年九上数学期末经典模拟试题含答案,共9页。试卷主要包含了下列二次函数中,顶点坐标为,下列函数是关于的反比例函数的是,若,则的值为等内容,欢迎下载使用。
这是一份湖南长沙雨花区雅境中学2023-2024学年九上数学期末经典试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,正方形的边长为,点在边上,不等式组的解集在数轴上表示为,如图,中,,则的值为等内容,欢迎下载使用。
这是一份北京一零一中学2023-2024学年九上数学期末经典试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,正方形的边长为,点在边上等内容,欢迎下载使用。