黑龙江省大庆杜尔伯特蒙古族自治县联考2023-2024学年九年级数学第一学期期末考试试题含答案
展开
这是一份黑龙江省大庆杜尔伯特蒙古族自治县联考2023-2024学年九年级数学第一学期期末考试试题含答案,共8页。试卷主要包含了如图,点A1的坐标为,下列方程中,没有实数根的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为( )
A.B.
C.D.
2.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )
A.B.C.D.
3.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为( )
A.(1,﹣)B.(﹣1,)C.(﹣,1)D.(,﹣1)
4.关于x的一元二次方程有两个实数根,则k的取值范围在数轴上可以表示为( )
A.B.
C.D.
5.为坐标原点,点、分别在轴和轴上,的内切圆的半径长为( )
A.B.C.D.
6.如图,在⊙O中,点A、B、C在圆上,∠AOB=100°,则∠C=( )
A.45°B.50°C.55°D.60°
7.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3,过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标为( )
A.B.0C.D.
8.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )
A.6B.8
C.10D.12
9.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为( )
A.150°B.140°C.130°D.120°
10.下列方程中,没有实数根的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.若点与点关于原点对称,则______.
12.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行_____m才停下来.
13.如图,点B是反比例函数上一点,矩形OABC的周长是20,正方形BCGH和正方形OCDF的面积之和为68,则反比例函数的解析式是_____.
14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.
15.如图,在中, ,于点D,于点E,F、G分别是BC、DE的中点,若,则FG的长度为__________.
16.将抛物线y=﹣x2﹣4x(﹣4≤x≤0)沿y轴折叠后得另一条抛物线,若直线y=x+b与这两条抛物线共有3个公共点,则b的取值范围为_____.
17.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:
当x=-1时,y=__________.
18.若点A(-2,a),B(1,b),C(4,c)都在反比例函数 的图象上,则a、b、c大小关系是________.
三、解答题(共66分)
19.(10分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法迁移:
如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由)
.
20.(6分)用适当的方法解下列方程:
(1)
(2)
21.(6分)如图,的直径垂直于弦,垂足为,为延长线上一点,且.
(1)求证:为的切线;
(2)若,,求的半径.
22.(8分)解方程:(1)x2﹣1x+5=0(配方法) (2)(x+1)2=1x+1.
23.(8分)如图,已知抛物线经过、两点,与轴相交于点.
(1)求抛物线的解析式;
(2)点是对称轴上的一个动点,当的周长最小时,直接写出点的坐标和周长最小值;
(3)点为抛物线上一点,若,求出此时点的坐标.
24.(8分)某超市销售一种饮料, 每瓶进价为元,当每瓶售价元时,日均销售量瓶.经市场调查表明,每瓶售价每增加元,日均销售量减少瓶.
(1)当每瓶售价为元时,日均销售量为 瓶;
(2)当每瓶售价为多少元时,所得日均总利润为元;
(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?
25.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围.
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
26.(10分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路线为弧BD求图中阴影部分的面积.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、D
4、B
5、A
6、B
7、A
8、D
9、B
10、D
二、填空题(每小题3分,共24分)
11、1
12、600
13、y=.
14、
15、1
16、0<b<
17、3
18、a>c>b
三、解答题(共66分)
19、⑴EAF、△EAF、GF;⑵DE+BF=EF;⑶当∠B与∠D互补时,可使得DE+BF=EF.
20、(1), ;(2) ,
21、(1)见解析;(2)
22、 (2)x2=3,x2=2;(2)x2=﹣2,x2=3
23、(1);(2),;(3) , ,
24、(1);(2)元或元;(3)元时利润最大,最大利润元
25、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
26、π.
x
…
-2
0
2
3
…
y
…
8
0
0
3
…
相关试卷
这是一份2023-2024学年黑龙江省大庆市杜尔伯特蒙古族自治县数学九年级第一学期期末考试试题含答案,共7页。试卷主要包含了一元二次方程配方后化为,下列成语所描述的是随机事件的是等内容,欢迎下载使用。
这是一份2023-2024学年黑龙江省大庆市大庆中学八上数学期末联考试题含答案,共7页。试卷主要包含了答题时请按要求用笔,8的立方根是等内容,欢迎下载使用。
这是一份黑龙江省大庆杜尔伯特蒙古族自治县联考2023-2024学年数学八年级第一学期期末联考模拟试题含答案,共6页。试卷主要包含了下列式子,表示4的平方根的是,若点A,不等式3等内容,欢迎下载使用。