黑龙江省讷河市实验学校2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案
展开
这是一份黑龙江省讷河市实验学校2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知a、b、c、d是比例线段等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.反比例函数y=(k≠0)的图象经过点(2,-4),若点(4,n)在反比例函数的图象上,则n等于( )
A.﹣8B.﹣4C.﹣D.﹣2
2.已知二次函数的图象与轴有两个不同的交点,其横坐标分别为若且则( )
A.B.C.D.
3.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A.DE=EBB.DE=EBC.DE=DOD.DE=OB
4.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为( )
A.1:5B.4:5C.2:10D.2:5
5.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠ABB′的度数是( )
A.35°B.40°C.45°D.55°
6.矩形、菱形、正方形都一定具有的性质是( )
A.邻边相等B.四个角都是直角
C.对角线相等D.对角线互相平分
7.已知a、b、c、d是比例线段.a=2、b=3、d=1.那么c等于( )
A.9B.4C.1D.12
8.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )
A.①B.②C.③D.④
9.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为( )
A.15cmB.20cmC.25cmD.30cm
10.如果两个相似多边形的面积之比为,那么它们的周长之比是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.圆内接正六边形一边所对的圆周角的度数是__________.
12.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为______.
13.已知一元二次方程有一个根为,则的值为________________.
14.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.
15.如图,在正方形ABCD中,AB=4,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为_________
16.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.
17.已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为_________cm.
18.)已知反比例函数y=-,下列结论:①图象必经过点(-1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>-2.其中正确的有__________.(填序号)
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=1.
(1)求反比例函数的解析式;
(2)求cs∠OAB的值;
(1)求经过C、D两点的一次函数解析式.
20.(6分)某学校为了了解名初中毕业生体育考试成绩的情况(满分分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在这一组的频率为.请回答下列问题:
(1)在这个调查中,样本容量是______________;平均成绩是_________________;
(2)请补全成绩在这一组的频数分布直方图;
(3)若经过两年的练习,该校的体育平均成绩提高到了分,求该校学生体育成绩的年平均增长率.
21.(6分)已知在平面直角坐标系中,抛物线与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,
(1)求抛物线的表达式;
(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;
(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.
22.(8分)如图,在中,,,.将绕点逆时针方向旋转60°得到,连接,求线段的长.
23.(8分)(1)计算:.
(2)如图,正方形纸板在投影面上的正投影为,其中边与投影面平行,与投影面不平行.若正方形的边长为厘米,,求其投影的面积.
24.(8分)己知函数(是常数)
(1)当时,该函数图像与直线有几个公共点?请说明理由;
(2)若函数图像与轴只有一公共点,求的值.
25.(10分)在平面直角坐标系中,直线与双曲线相交于,两点,点坐标为(-3,2),点坐标为(n,-3).
(1)求一次函数和反比例函数的表达式;
(2)如果点是轴上一点,且的面积是5,求点的坐标.
(3)利用函数图象直接写出关于x的不等式的解集.
26.(10分)综合与实践:
如图,已知 中,.
(1)实践与操作: 作 的外接圆,连结 ,并在图中标明相应字母;(尺规作图,保留作图痕迹, 不写作法)
(2)猜想与证明: 若,求扇形的面积.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、D
4、D
5、D
6、D
7、B
8、A
9、D
10、A
二、填空题(每小题3分,共24分)
11、30°或150°
12、
13、-1
14、75°
15、2
16、1:1.
17、6
18、①③④
三、解答题(共66分)
19、(1);(2);(1).
20、(1),分;(2)见解析;(3).
21、(1)(2)P点坐标(﹣5,﹣),Q点坐标(3,﹣)(3)M点的坐标为(﹣,),(﹣3,1)
22、
23、(1);(2).
24、(1)函数图像与直线有两个不同的公共点;(2)或.
25、(1)一次函数表达式为y=-x-1;反比例函数表达式为y=-;(2)点P的坐标是(-3,0)或(1,0);(3)-3<x<0或x>0
26、(1)答案见解析;(2)
相关试卷
这是一份2023-2024学年江苏无锡市锡中学实验学校数学九年级第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若反比例函数y=的图象经过点,下列事件中是随机事件的是等内容,欢迎下载使用。
这是一份黑龙江省鸡东县平阳中学2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案,共6页。试卷主要包含了答题时请按要求用笔,已知3x=4y,方程的根的情况是等内容,欢迎下载使用。
这是一份黑龙江省大庆市肇源2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了抛物线的对称轴是,点M关于原点对称的点N的坐标是,抛物线如图所示,给出以下结论,如图所示的两个三角形等内容,欢迎下载使用。