黑龙江省五常市山林一中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案
展开这是一份黑龙江省五常市山林一中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知,抛物线y=等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.二次函数y=x2+4x+3,当0≤x≤时,y的最大值为( )
A.3B.7C.D.
2.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是( )
A.B.C.D.
3.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是( )
A.(3,﹣2)B.(2,3)C.(2,﹣3)D.(﹣3,﹣3)
4.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是( )
A.5B.4C.3D.0
5.下列图形中,是轴对称图形,但不是中心对称图形的是( )
A.B.C.D.
6.已知:如图,菱形ABCD的周长为20cm,对角线AC=8cm,直线l从点A出发,以1cm/s的速度沿AC向右运动,直到过点C为止在运动过程中,直线l始终垂直于AC,若平移过程中直线l扫过的面积为S(cm2),直线l的运动时间为t(s),则下列最能反映S与t之间函数关系的图象是( )
A.B.
C.D.
7.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为( )
A.B.C.D.
8.抛物线y=(x﹣2)2﹣3的顶点坐标是( )
A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)
9.如图,AB是⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且AO=CD,则∠PCA=( )
A.30°B.60°C.67.5°D.45°
10.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于( )
A.2∶5B.4∶9C.4∶25D.2∶3
二、填空题(每小题3分,共24分)
11.如图,直线y=+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.
12.如图,在中,,,,点D、E分别是AB、AC的中点,CF是的平分线,交ED的延长线于点F,则DF的长是______.
13.如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段弧,三段圆弧围成的曲边三角形称为勒洛三角形,若这个等边三角形的边长为3,那么勒洛三角形(曲边三角形)的周长为_____.
14.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为_____.
15.如果两个相似三角形的相似比为1:4,那么它们的面积比为_____.
16.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,则道路的宽为 .
17.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.
18.在一只不透明的口袋中放入只有颜色不同的白色球3个,黑色球5个,黄色球n个,搅匀后随机从中摸取一个恰好是白色球的概率为,则放入的黄色球数n=_________.
三、解答题(共66分)
19.(10分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求下列事件的概率.
(1)两次都摸到红球;
(2)第一次摸到红球,第二次摸到绿球.
20.(6分)计算:sin45°+2cs30°﹣tan60°
21.(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.
(1)求与之间的函数关系式,并写出自变量的取值范围;
(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
22.(8分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为),另外三边利用学校现有总长的铁栏围成,留出2米长门供学生进出.若围成的面积为,试求出自行车车棚的长和宽.
23.(8分)(1)计算:
(2)解方程):
24.(8分)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:
(1)求抛物线的解析式;
(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长;
(3)点F在抛物线上运动,是否存在点F,使△BFC的面积为6,如果存在,求出点F的坐标;如果不存在,请说明理由.
25.(10分)如图1,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.点D(2,3)在该抛物线上,直线AD与y轴相交于点E,点F是直线AD上方的抛物线上的动点.
(1)求该抛物线对应的二次函数关系式;
(2)当点F到直线AD距离最大时,求点F的坐标;
(3)如图2,点M是抛物线的顶点,点P的坐标为(0,n),点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形.①求n的值;②若点T和点Q关于AM所在直线对称,求点T的坐标.
26.(10分)如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).
(1)求实数、、的值;
(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请说明理由.
(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、C
4、C
5、A
6、B
7、C
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、(1,3)
12、4
13、3π.
14、2π
15、1:1
16、2m
17、60°
18、1
三、解答题(共66分)
19、(1);(2).
20、1
21、(1) (2),,144元
22、若围成的面积为,自行车车棚的长和宽分别为10米,18米.
23、 (1) ;(2)
24、(1)y=﹣x2+2x+3;(2)2;(3)存在,理由见解析.
25、(1)y=-x2+2x+3;(2)F(,);(3)n=,T(0,-)或n=-,T(0,).
26、(1),;(1)存在,,,,,;(3)
相关试卷
这是一份黑龙江省五常市部分学校2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,函数y=3等内容,欢迎下载使用。
这是一份上海延安中学2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图,空地上等内容,欢迎下载使用。
这是一份2023-2024学年黑龙江省五常市山林一中学九年级数学第一学期期末检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,函数的图象上有两点,,若,则等内容,欢迎下载使用。