黄南市重点中学2023-2024学年九上数学期末预测试题含答案
展开
这是一份黄南市重点中学2023-2024学年九上数学期末预测试题含答案,共8页。试卷主要包含了如果,那么下列各式中不成立的是,下列说法正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.sin60°的值是( )
A.B.C.D.
2.将抛物线y=x2﹣2向右平移3个单位长度,再向上平移2个单位长度,则所得抛物线的解析式为( )
A.y=(x+3)2B.y=(x﹣3)2C.y=(x+2)2+1D.y=(x﹣2)2+1
3.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是( )
A.摸出的是白球B.摸出的是黑球
C.摸出的是红球D.摸出的是绿球
4.如图,在平面直角坐标系中,点、在函数的图象上,过点分别作轴、轴的垂线,垂足为、;过点分别作轴、轴的垂线,垂足为、.交于点,随着的增大,四边形的面积( )
A.增大B.减小C.先减小后增大D.先增大后减小
5.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是( )
A.B.C.D.
6.如果,那么下列各式中不成立的是( )
A.;B.;C.;D.
7.向上发射一枚炮弹,经秒后的高度为,且时间与高度的关系式为,若此时炮弹在第秒与第秒时的高度相等,则在下列哪一个时间的高度是最高的( )
A.第秒B.第秒C.第秒D.第秒
8.如图,为了测量路灯离地面的高度,身高的小明站在距离路灯的底部(点)的点处,测得自己的影子的长为,则路灯的高度是( )
A.B.C.D.
9.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G为DF的中点.若BE=1,AG=3,则AB的长是( )
A.B.2C.D.
10.下列说法正确的是( )
A.某一事件发生的可能性非常大就是必然事件
B.2020年1月27日杭州会下雪是随机事件
C.概率很小的事情不可能发生
D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次
二、填空题(每小题3分,共24分)
11.如图,为等边三角形,点在外,连接、.若,,,则__________.
12.已知线段AB=4,点P是线段AB的黄金分割点,且AP<BP,那么AP的长为_____.
13.如图,已知圆周角∠ACB=130°,则圆心角∠AOB=______.
14.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数, 则这个两位数能被3整除的概率是__________.
15.矩形的对角线长13,一边长为5,则它的面积为_____.
16.若抛物线 的开口向上,则 的取值范围是________.
17.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC中,AB=AC,若△ABC是“好玩三角形”,则tanB____________。
18.如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为(1,0),以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径的画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点,… 按此做法进行下去,其中弧的长为_______.
三、解答题(共66分)
19.(10分)如图,中,顶点的坐标是,轴,交轴于点,顶点的纵坐标是,的面积是.反比例函数的图象经过点和,求反比例函数的表达式.
20.(6分)如图,为了测得旗杆AB的高度,小明在D处用高为1m的测角仪CD,测得旗杆顶点A的仰角为45°,再向旗杆方向前进10m,又测得旗杆顶点A的仰角为60°,求旗杆AB的高度.
21.(6分)已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF相交于点G.
(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:.
(2)如图②,若四边形ABCD是平行四边形,要使成立,完成下列探究过程:
要使,转化成,显然△DEA与△CFD不相似,考虑,需要△DEA∽△DFG,只需∠A=∠________;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠________.由此探究出使成立时,∠B与∠EGC应该满足的关系是________.
(3)如图③,若AB=BC=6,AD=CD=8,∠BAD=90°,DE⊥CF,那么的值是多少?(直接写出结果)
22.(8分)解下列方程:
配方法
.
23.(8分)已知二次函数的图像经过点A(0,3),B(-1,0).
(1)求该二次函数的解析式
(2)在图中画出该函数的图象
24.(8分)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE
25.(10分)已知二次函数y=a−4x+c的图象过点(−1,0)和点(2,−9),
(1)求该二次函数的解析式并写出其对称轴;
(2)当x满足什么条件时,函数值大于0?(不写求解过程),
26.(10分)如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分别交x轴、线段AC于点E、F.
(1)求抛物线的对称轴及点A的坐标;
(2)连结AD,CD,求△ACD的面积;
(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、A
4、A
5、C
6、D
7、B
8、B
9、B
10、B
二、填空题(每小题3分,共24分)
11、1
12、(6﹣2)cm.
13、100゜
14、
15、1
16、a>2
17、1或
18、.
三、解答题(共66分)
19、.
20、(16+5)米.
21、(1)证明见解析;(2)DGF,CDF,∠B+∠EGC=180°;(3).
22、;或.
23、(1);(2)详见解析.
24、见解析
25、(1),;(2)当x<或x>5时,函数值大于1.
26、(1)抛物线的对称轴x=1,A(6,0);(1)△ACD的面积为11;(3)点P的坐标为(1,1)或(1,6)或(1,3).
相关试卷
这是一份黔东南市重点中学2023-2024学年九上数学期末达标测试试题含答案,共8页。试卷主要包含了用配方法解方程配方正确的是,如果两个相似多边形的面积比为4等内容,欢迎下载使用。
这是一份茂名市重点中学2023-2024学年九上数学期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份山南市2023-2024学年九上数学期末预测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件中是随机事件的个数是,若3a=5b,则a等内容,欢迎下载使用。