青海省海北市2023-2024学年数学九上期末统考试题含答案
展开这是一份青海省海北市2023-2024学年数学九上期末统考试题含答案,共8页。试卷主要包含了已知,则代数式的值为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列图形中,可以看作是中心对称图形的是( )
A.B.C.D.
2.如图,⊙O的半径为2,点A的坐标为,直线AB为⊙O的切线,B为切点,则B点的坐标为( )
A.B.C.D.
3.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是( )
A.点O为位似中心且位似比为1:2
B.△ABC与△DEF是位似图形
C.△ABC与△DEF是相似图形
D.△ABC与△DEF的面积之比为4:1
4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是( )
A.2B.3C.4D.5
5.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是( )
A.70°B.80°C.110°D.140°
6.方程x2﹣4x+5=0根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.有一个实数根D.没有实数根
7.从一组数据1,2,2,3中任意取走一个数,剩下三个数不变的是( )
A.平均数B.众数C.中位数D.方差
8.已知,则代数式的值为( )
A.B.C.D.
9.一个群里共有个好友,每个好友都分别给群里的其他好友发一条信息,共发信息1980条,则可列方程( )
A.B.C.D.
10.二次函数的图象如图所示,对称轴为直线,下列结论不正确的是( )
A.
B.当时,顶点的坐标为
C.当时,
D.当时,y随x的增大而增大
二、填空题(每小题3分,共24分)
11.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是_____.
12.已知点在直线上,也在双曲线上,则m2+n2的值为______.
13.已知⊙的半径为4,⊙的半径为R,若⊙与⊙相切,且,则R的值为________.
14.在平面直角坐标系中,将抛物线向左平移2个单位后顶点坐标为_______.
15.计算:﹣(﹣π)0+()﹣1=_____.
16.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点为位似中心,将△ABC缩小,使变换得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应点的坐标为____.
17.如图,点是反比例函数的图象上的一点,过点作平行四边形,使点、在轴上,点在轴上,则平行四边形的面积为______.
18.如图,在中,点分别是边上的点,, 则的长为________.
三、解答题(共66分)
19.(10分)小明本学期4次数学考试成绩如下表如示:
(1)小明4次考试成绩的中位数为__________分,众数为______________分;
(2)学校规定:两次月考的平均成绩作为平时成绩,求小明本学期的平时成绩;
(3)如果本学期的总评成绩按照平时成绩占20%、期中成绩占30%、期末成绩占50%计算,那么小明本学期的数学总评成绩是多少分?
20.(6分)某校组织学生参加“安全知识竞赛”(满分为分),测试结束后,张老师从七年级名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:
(1)张老师抽取的这部分学生中,共有 名男生, 名女生;
(2)张老师抽取的这部分学生中,女生成绩的众数是 ;
(3)若将不低于分的成绩定为优秀,请估计七年级名学生中成绩为优秀的学生人数大约是多少.
21.(6分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)
(1)试写出与之间的函数关系式;
(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?
22.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,可计算出甲的平均成绩是 环(直接写出结果);
(2)已知乙的平均成绩是9环,试计算其第二次测试成绩的环数;
(3)分别计算甲、乙六次测试成绩的方差,根据计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:)
23.(8分)如图,将矩形ABCD绕点C旋转得到矩形EFGC,点E在AD上.延长AD交FG于点H
(1)求证:△EDC≌△HFE;
(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.
24.(8分)解下列方程:
(1)x2﹣2x﹣2=0;
(2)(x﹣1)(x﹣3)=1.
25.(10分)山西是我国酿酒最早的地区之一,山西酿酒业迄今为止已有余年的历史.在漫长的历史进程中,山西人民酿造出品种繁多、驰名中外的美酒佳酿,其中以汾酒、竹叶青酒最为有名.某烟酒超市卖有竹叶青酒,每瓶成本价是元,经调查发现,当售价为元时,每天可以售出瓶,售价每降低元,可多售出瓶(售价不高于元)
(1)售价为多少时可以使每天的利润最大?最大利润是多少?
(2)要使每天的利润不低于元,每瓶竹叶青酒的售价应该控制在什么范围内?
26.(10分)已知关于x的方程x2+(2m+1)x+m(m+1)=1.
(1)求证:方程总有两个不相等的实数根;
(2)已知方程的一个根为x=1,求代数式m2+m﹣5的值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、A
4、B
5、C
6、D
7、C
8、B
9、B
10、C
二、填空题(每小题3分,共24分)
11、m>﹣
12、1
13、6或14
14、
15、1
16、 (1,)或(-1,-)
17、6
18、1
三、解答题(共66分)
19、(1)139,138;(2)140分;(3)139分
20、(1),(2);(3)(人)
21、(1);(2)当销售单价为180元,年获利最大,并且第一年年底公司亏损了,还差40万元就可收回全部投资.
22、(1) 9 ;(2) 7 ;(3),,选甲,理由见解析.
23、(1)见解析;(2)见解析.
24、(1)x1=+1,x2=﹣+1;(2)x1=5,x2=﹣1
25、(1)每瓶竹叶青酒售价为元时,利润最大,最大利润为元;(2)要使每天利润不低于元,每瓶竹叶青酒售价应控制在元到元之间.
26、(1)方程总有两个不相等的实数根;(2)-2.
成绩类别
第一次月考
第二次月考
期中
期末
成绩分
138
142
140
138
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
10
10
9
8
相关试卷
这是一份青海省西宁市海湖中学2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,函数y=kx+b等内容,欢迎下载使用。
这是一份福建省晋江安海片区五校联考2023-2024学年九上数学期末统考模拟试题含答案,共7页。
这是一份青海省西宁市海湖中学2023-2024学年数学九上期末检测试题含答案,共6页。试卷主要包含了下列说法正确的个数是,在中,,,,则直角边的长是,-5的倒数是等内容,欢迎下载使用。