2023-2024学年吉林省长春市九台区数学九年级第一学期期末复习检测模拟试题含答案
展开这是一份2023-2024学年吉林省长春市九台区数学九年级第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.正十边形的外角和为( )
A.180°B.360°C.720°D.1440°
2.如图,在正方形网格中,每个小正方形的边长是个单位长度,以点为位似中心,在网格中画,使与位似,且与的位似比为,则点的坐标可以为( )
A.B.C.D.
3.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.求竹竿有多长.设竹竿长尺,则根据题意,可列方程( )
A.B.
C.D.
4.如图,的直径的长为,弦长为,的平分线交于,则长为( )
A.7B.7C.8D.9
5.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于( )
A.20°B.30°C.40°D.60°
6.点在反比例函数y=的图象上,则k的值是( )
A.1B.3C.﹣1D.﹣3
7.已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是( )
A.3cmB.4cmC.5cmD.6cm
8.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为
A.4.4×108B.4.40×108C.4.4×109D.4.4×1010
9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是( )
A.B.C.D.
10.二次函数的部分图象如图所示,有以下结论:①;②;③;④,其中错误结论的个数是( )
A.1B.2C.3D.4
11.下列说法中错误的是( )
A.成中心对称的两个图形全等
B.成中心对称的两个图形中,对称点的连线被对称轴平分
C.中心对称图形的对称中心是对称点连线的中心
D.中心对称图形绕对称中心旋转180°后,都能与自身重合
12.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
A.2.8×103B.28×103C.2.8×104D.0.28×105
二、填空题(每题4分,共24分)
13.如图,在△ABC 中,点 D,E 分别在边 AB,AC上,若 DE∥BC,AD=2BD,则 DE:BC 等于_______.
14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.
15.如图是一个三角形点阵,从上向下数有无数多行,其中第一行有2个点,第二行有4个点……第n行有2n个点……,若前n行的点数和为930,则n是________.
16.点P、Q两点均在反比例函数的图象上,且P、Q两点关于原点成中心对称,P(2,3),则点Q的坐标是_____.
17.如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点,当钟面显示点分时,分针垂直与桌面,点距离桌面的高度为公分,若此钟面显示点分时,点距桌面的高度为公分,如图2,钟面显示点分时,点距桌面的高度_________________.
18.把函数y=x2的图象向右平移2个单位长度,再向下平移1个单位长度,得到函数____的图象.
三、解答题(共78分)
19.(8分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F
(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;
(2)如图2,①求证:BP=BF;
②当AD=25,且AE<DE时,求cs∠PCB的值;
③当BP=9时,求BE•EF的值.
20.(8分)如图,已知⊙O的半径长为R=5,弦AB 与弦CD平行,它们之间距离为5,AB=6,求弦CD的长.
21.(8分)如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.
(1)试求、的值,并写出该二次函数表达式;
(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:
①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?
②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?
22.(10分)先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.
23.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)
24.(10分)如图,在平行四边形中,对角线,相交于点为的中点,连接交于点,且.
(1)求的长;
(2)若,求.
25.(12分)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.
26.(12分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)
(1)分别求出y1、y2的函数关系式(不写自变量取值范围);
(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、B
5、C
6、B
7、D
8、C
9、C
10、A
11、B
12、C
二、填空题(每题4分,共24分)
13、2:1
14、1
15、1
16、
17、公分
18、y=(x-2)2-1
三、解答题(共78分)
19、(1)证明见解析;(2)①证明见解析;②;③1.
20、
21、(1),;(2) ①当点运动到距离点个单位长度处,有;②当点运动到距离点个单位处时,四边形面积最小,最小值为.
22、, -.
23、(1)见解析;(2).
24、(1)6;(2)4
25、
26、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.
相关试卷
这是一份2023-2024学年吉林省长春市朝阳区数学九年级第一学期期末检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份吉林省长春市九台市2023-2024学年九年级数学第一学期期末复习检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式能与合并的是,设A等内容,欢迎下载使用。
这是一份吉林省长春市九台2023-2024学年数学九年级第一学期期末达标检测试题含答案,共7页。