2023-2024学年山东省济南市历城区数学九上期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为( )
A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y3
2.在△ABC中,∠C=Rt∠,AC=6,BC=8,则csB的值是( )
A.B.C.D.
3.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为( )
A.7B.14C.6D.15
4.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x,则可以列方程为( )
A.B.
C.D.
5.关于x的二次函数y=x2﹣mx+5,当x≥1时,y随x的增大而增大,则实数m的取值范围是( )
A.m<2B.m=2C.m≤2D.m≥2
6.若点与点关于原点成中心对称,则的值是( )
A.1B.3C.5D.7
7.把抛物线向右平移个单位,再向下平移个单位,即得到抛物线( )
A.y=-(x+2) 2+3B.y=-(x-2) 2+3C.y=-(x+2) 2-3D.y=-(x-2) 2-3
8.如图,在四边形中,对角线,相交于点,且,.若要使四边形为菱形,则可以添加的条件是( )
A.B.C.D.
9.如图,将绕点旋转180°得到,设点的坐标为,则点的坐标为( )
A.B.C.D.
10.我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( )
A.B.C.D.
11.计算的结果是( )
A.-3B.9C.3D.-9
12.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,是⊙O上的点,若,则___________度.
14.若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.
15.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.
16.如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点,.连接,,且.过点作,交反比例函数(其中)的图象于点,连接交于点,则的值为_____________.
17.有三张除颜色外,大小、形状完全相同的卡片,第一张卡片两面都是红色,第二张卡片两面都是白色,第三张卡片一面是红色,一面是白色,用三只杯子分别把它们遮盖住,若任意移开其中的一只杯子,则看到的这张卡片两面都是红色的概率是__________.
18.把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是 .
三、解答题(共78分)
19.(8分)为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用天.
(1)求甲、乙两工程队每天能完成塑胶改造的面积;
(2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求与的函数解析式;
(3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.
20.(8分)已知关于x的一元二次方程x2-2x+m=0,有两个不相等的实数根.
⑴求实数m的最大整数值;
⑵在⑴的条下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.
21.(8分)如图,在同一平面直角坐标系中,正比例函数y=2x的图象与反比例函数y=的图象交于A,B两点,过点A作AC⊥x轴,垂足为点C,AC=2,求k的值.
22.(10分)如图,AB是的直径,点C,D在上,且BD平分∠ABC.过点D作BC的垂线,与BC的延长线相交于点E,与BA的延长线相交于点F.
(1)求证:EF与相切:
(2)若AB=3,BD=,求CE的长.
23.(10分)问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
类比探究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
(2)△DEF是否为正三角形?请说明理由.
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
24.(10分)如图,在正方形中,是对角线上的一个动点,连接,过点作交于点.
(1)如图①,求证:;
(2)如图②,连接为的中点,的延长线交边于点,当时,求和的长;
(3)如图③,过点作于,当时,求的面积.
25.(12分)我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)
26.(12分)某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、B
4、D
5、C
6、C
7、D
8、D
9、D
10、A
11、C
12、D
二、填空题(每题4分,共24分)
13、130°.
14、1
15、
16、
17、
18、
三、解答题(共78分)
19、 (1)甲、乙工程队每天能完成绿化的面积分别是、;(2);(3)安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.
20、⑴m的最大整数值为m=1
(2)x12+x22-x1x2= 5
21、k=1
22、(1)证明见解析;(2).
23、 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1
24、(1)见解析;(2);;(3)面积为.
25、的长为
26、销售单价为35元时,才能在半月内获得最大利润.
山东省泰安市肥城市2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份山东省泰安市肥城市2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,把二次函数化成的形式是下列中的,在平面直角坐标系中,点M等内容,欢迎下载使用。
2023-2024学年山东省邹平唐村中学数学九上期末学业质量监测试题含答案: 这是一份2023-2024学年山东省邹平唐村中学数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知点P等内容,欢迎下载使用。
2023-2024学年山东省日照市名校数学九上期末学业质量监测试题含答案: 这是一份2023-2024学年山东省日照市名校数学九上期末学业质量监测试题含答案,共7页。