2023-2024学年山西省吕梁市数学九上期末质量检测试题含答案
展开
这是一份2023-2024学年山西省吕梁市数学九上期末质量检测试题含答案,共9页。试卷主要包含了已知下列命题等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
A.135°B.122.5°C.115.5°D.112.5°
2.如图所示,AB∥CD,∠A=50°,∠C=27°,则∠AEC的大小应为( )
A.23°B.70°C.77°D.80°
3.某商品原价格为100元,连续两次上涨,每次涨幅10%,则该商品两次上涨后的价格为( )
A.121元B.110元C.120元D.81元
4.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差B.众数C.平均数D.中位数
5.若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=10cm,则线段d的长为( )
A.2cmB.4cmC.5cmD.6cm
6.已知下列命题:①对角线互相平分的四边形是平行四边形;②内错角相等;③对角线互相垂直的四边形是菱形;④矩形的对角线相等,其中假命题有( )
A.个B.个C.个D.个
7.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧上一点,如果∠AOB=58º,那么∠ADC的度数为( )
A.32ºB.29ºC.58ºD.116º
8.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则AE的长为( )
A.B.C.D.
9.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为( )
A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y3
10.已知二次函数,当时,随增大而增大,当时,随增大而减小,且满足,则当时,的值为( )
A.B.C.D.
11.如图,在正方形ABCD中,H是对角线BD的中点,延长DC至E,使得DE=DB,连接BE,作DF⊥BE交BC于点G,交BE于点F,连接CH、FH,下列结论:(1)HC=HF;(2)DG=2EF;(3)BE·DF=2CD2;(4)S△BDE=4S△DFH;(5)HF∥DE,正确的个数是( )
A.5B.4C.3D.2
12.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=( )
A.30°B.35°C.45°D.60°
二、填空题(每题4分,共24分)
13.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.
14.如图,AB是⊙O的直径,AB=6,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为_____.
15.如图,在矩形中,,点在边上,,则BE=__________;若交于点,则的长度为________.
16.关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为________.
17.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是
18. “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
三、解答题(共78分)
19.(8分) (1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?
在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明 .
(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)
(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.
20.(8分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=交于点C,D.作CE⊥x轴,垂足为E,CF⊥y轴,垂足为F.点B为OF的中点,四边形OECF的面积为16,点D的坐标为(4,﹣b).
(1)求一次函数表达式和反比例函数表达式;
(2)求出点C坐标,并根据图象直接写出不等式kx+b≤的解集.
21.(8分)某校的学生除了体育课要进行体育锻炼外,寒暑假期间还要自己抽时间进行体育锻炼,为了了解同学们假期体育锻炼的情况,开学时体育老师随机抽取了部分同学进行调查,按锻炼的时间x(分钟)分为以下四类:A类(),B类(),C类(),D类(),对调查结果进行整理并绘制了如图所示的不完整的折线统计图和扇形统计图,请结合图中的信息解答下列各题:
(1)扇形统计图中D类所对应的圆心角度数为 ,并补全折线统计图;
(2)现从A类中选出两名男同学和三名女同学,从以上五名同学中随机抽取两名同学进行采访,请利用画树状图或列表的方法求出抽到的学生恰好是一男一女的概率.
22.(10分)根据学习函数的经验,探究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:
(1)下表给出了部分x,y的取值;
由上表可知,a= ,b= ;
(2)用你喜欢的方式在坐标系中画出函数y=x2+ax﹣4|x+b|+4的图象;
(3)结合你所画的函数图象,写出该函数的一条性质;
(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.
23.(10分)如图,抛物线与轴交于点,,与轴交于点.
(1)求点,,的坐标;
(2)将绕的中点旋转,得到.
①求点的坐标;
②判断的形状,并说明理由.
(3)在该抛物线对称轴上是否存在点,使与相似,若存在,请写出所有满足条件的点的坐标;若不存在,请说明理由.
24.(10分)如图,在平面直角坐标系xOy中,二次函数的图象与轴,轴的交点分别为和.
(1)求此二次函数的表达式;
(2)结合函数图象,直接写出当时,的取值范围.
25.(12分)已知二次函数y=(x-1)2+n的部分点坐标如下表所示:
(1)求该二次函数解析式;
(2)完成上表,并在平面直角坐标系中画出函数图象
26.(12分)阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图,△ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.
探究线段AN、MN、CN之间的数量关系,并证明.
同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”
小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家就大胆的探究吧.”
小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解决.”
老师: “若其他条件不变,设AB=a,则可以用含a的式子表示出线段CM的长.”
(1)探究线段AN、AB之间的数量关系,并证明;
(2)探究线段AN、MN、CN之间的数量关系,并证明;
(3)设AB=a,求线段CM的长(用含a的式子表示).
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、A
4、D
5、C
6、B
7、B
8、D
9、B
10、A
11、B
12、A
二、填空题(每题4分,共24分)
13、1
14、3
15、5
16、.
17、.
18、57.5
三、解答题(共78分)
19、 (1)ME=MD=MB=MC;(2)证明见解析;(3)证明见解析.
20、(1)y=﹣2x+1;(2)﹣2≤x<0或x≥1.
21、(1);(2)画图见解析,.
22、(1)﹣1,﹣1;(1)详见解析;(3)函数关于x=1对称;(4)0<m<1.
23、(1),,;(2)①;②是直角三角形;(3),,,
24、(1);(2)或.
25、(1)y=(x-1)2+1;(2)填表见解析,图象见解析.
26、(1)(2)或,证明见解析(3)
x
L
﹣3
﹣2
﹣1
0
1
2
3
4
5
L
y
L
3
0
﹣1
0
3
0
﹣1
0
3
L
相关试卷
这是一份山西省(临汾地区)2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,在单词prbability,已知在直角坐标平面内,以点P等内容,欢迎下载使用。
这是一份2023-2024学年山西省吕梁市兴县康宁中学九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,方程的根是,方程﹣1=的解是,定义等内容,欢迎下载使用。
这是一份2023-2024学年山西省吕梁市孝义市数学九上期末检测试题含答案,共8页。试卷主要包含了已知y=等内容,欢迎下载使用。