2023-2024学年山西省(同盛地区)数学九上期末调研模拟试题含答案
展开这是一份2023-2024学年山西省(同盛地区)数学九上期末调研模拟试题含答案,共8页。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于( )
A.50°B.55°C.65°D.70°
2.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2B.m<﹣2
C.m>2D.m<2
3.如图,在平面直角坐标系内,正方形OABC的顶点A,B在第一象限内,且点A,B在反比例函数y=(k≠0)的图象上,点C在第四象限内.其中,点A的纵坐标为2,则k的值为( )
A.2﹣2B.2﹣2C.4﹣4D.4﹣4
4.下列函数,当时,随着的增大而减小的是( )
A.B.C.D.
5.将二次函数的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是( )
A.B.
C.D.
6.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是( )
A.AD=BDB.∠ACB=∠AOEC.弧AE=弧BED.OD=DE
7.如图,在中,点C为弧AB的中点,若(为锐角),则( )
A.B.C.D.
8.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有( )
A.6个B.16个C.18个D.24个
9.三角形两边长分别是和,第三边长是一元二次方程的一个实数根,则该三角形的面积是( )
A.B.C.或D.或
10.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.
①四边形ACED是平行四边形;
②△BCE是等腰三角形;
③四边形ACEB的周长是;
④四边形ACEB的面积是1.
则以上结论正确的是( )
A.①②B.②④C.①②③D.①③④
11.如图,中,,顶点,分别在反比例函数()与()的图象上.则下列等式成立的是( )
A.B.C.D.
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有( )
A.2个B.3个C.4个D.5个
二、填空题(每题4分,共24分)
13.如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___
14.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则sin(α+β)=_____________.
15.如图,四边形是的内接四边形,且,点在的延长线上,若,则的半径_________________.
16.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=______.
17.若,分别是一元二次方程的两个实数根,则__________.
18.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:
据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)
三、解答题(共78分)
19.(8分)解方程.
(1)1x1﹣6x﹣1=0;
(1)1y(y+1)﹣y=1.
20.(8分)如图,在△ABC中,AB=AC=13,BC=10,求tanB的值.
21.(8分)已知抛物线与轴交于点.
(1)求点的坐标和该抛物线的顶点坐标;
(2)若该抛物线与轴交于两点,求的面积;
(3)将该抛物线先向左平移个单位长度,再向上平移个单位长度,求平移后的抛物线的解析式(直接写出结果即可).
22.(10分)解方程:(配方法)
23.(10分)如图,在平面直角坐标系中,ΔABC的三个顶点坐标分别为A(-2,1)、B(-1,4)、C(-3,2).
(1)画图:以原点为位似中心,位似比为1:2,在第二象限作出ΔABC的放大后的图形
(2)填空:点C1的坐标为 ,= .
24.(10分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
(1)求k1,k2,b的值;
(2)求△AOB的面积;
(3)请直接写出不等式≥k2x+b的解.
25.(12分)已知矩形的周长为1.
(1)当该矩形的面积为200时,求它的边长;
(2)请表示出这个矩形的面积与其一边长的关系,并求出当矩形面积取得最大值时,矩形的边长.
26.(12分)如图,在南北方向的海岸线上,有两艘巡逻船,现均收到故障船的求救信号.已知两船相距海里,船在船的北偏东60°方向上,船在船的东南方向上, 上有一观测点,测得船正好在观测点的南偏东75°方向上.
(1)分别求出与,与间的距离和; (本问如果有根号,结果请保留根号) (此提示可以帮助你解题:∵,∴)
(2)已知距观测点处100海里范围内有暗礁,若巡逻船沿直线去营救船,去营救的途中有无触礁的危险?(参考数据: )
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、D
5、C
6、D
7、B
8、B
9、D
10、A
11、C
12、A
二、填空题(每题4分,共24分)
13、
14、
15、
16、80°或120°
17、-3
18、 B
三、解答题(共78分)
19、(1),;(1)y1=﹣1,y1=.
20、
21、(1)(0,5);;(2)15;(3)
22、,
23、(1)见解析;(2)(-6,4),2
24、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.
25、(1)矩形的边长为10和2;(2)这个矩形的面积S与其一边长x的关系式是S=-x2+30x;当矩形的面积取得最大值时,矩形是边长为15的正方形.
26、(1)与之间的距离为200海里, 与之间的距离为海里;(2)巡逻船沿直线航线,在去营救的途中没有触暗礁危险.
等待时的频数间
乘车等待时间
地铁站
5≤t≤10
10<t≤15
15<t≤20
20<t≤25
25<t≤30
合计
A
50
50
152
148
100
500
B
45
215
167
43
30
500
相关试卷
这是一份山西省运城市2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,关于x的一元二次方程等内容,欢迎下载使用。
这是一份山西省(临汾地区)2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,在单词prbability,已知在直角坐标平面内,以点P等内容,欢迎下载使用。
这是一份2023-2024学年山西省(太原临汾地区)数学九年级第一学期期末调研模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是,如图,抛物线y=等内容,欢迎下载使用。