2023-2024学年广东省汕头市澄海区数学九上期末达标测试试题含答案
展开
这是一份2023-2024学年广东省汕头市澄海区数学九上期末达标测试试题含答案,共7页。试卷主要包含了下列事件中,是随机事件的是,如图,在中,若,则的长是,下列各式计算正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1. “三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是( )
A.60°B.65°C.75°D.80°
2.如图,是的直径,点、、在上.若,则的度数为( )
A.B.C.D.
3.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是( ).
A.3B.4C.6D.8
4.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为( )
A.逐渐变小B.逐渐变大C.时大时小D.保持不变
5.袋子中有4个黑球和3个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机从袋中摸出一个球,摸到白球的概率为( )
A.B.C.D.
6.菱形中,,对角线相交于点,以为圆心,以3为半径作,则四个点在上的个数为( )
A.1B.2C.3D.4
7.下列事件中,是随机事件的是( )
A.任意一个五边形的外角和等于540°
B.通常情况下,将油滴入水中,油会浮在水面上
C.随意翻一本120页的书,翻到的页码是150
D.经过有交通信号灯的路口,遇到绿灯
8. 若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为( ).
A.-1或2B.-1或1
C.1或2D.-1或2或1
9.如图,在中,若,则的长是( )
A.B.C.D.
10.下列各式计算正确的是( )
A.2x•3x=6x B.3x-2x=x C.(2x)2=4x D.6x÷2x=3x
11.如图,直线,等腰的直角顶点在上,顶点在上,若,则( )
A.31°B.45°C.30°D.59°
12.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为( )
A.10πB.
C.πD.π
二、填空题(每题4分,共24分)
13.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点为位似中心,将△ABC缩小,使变换得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应点的坐标为____.
14.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(结果精确到0.1m)
15.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.
16.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=3,那么正方形ABCD的面积是__________.
17.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=_____.
18.用配方法解方程x2﹣2x﹣6=0,原方程可化为_____.
三、解答题(共78分)
19.(8分)已知关于x的方程x2-(2m+1)x+m(m+1)=0.
(1)求证:方程总有两个不相等的实数根;
(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).
20.(8分)如图,AB是⊙O的直径,,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.
(1)求证:直线BF是⊙O的切线;
(2)若OB=2,求BD的长.
21.(8分)如图,在平面直角坐标系中,直线l1与x轴交于点A,与y轴交于点B(0,4),OA=OB,点C(﹣3,n)在直线l1上.
(1)求直线l1和直线OC的解析式;
(2)点D是点A关于y轴的对称点,将直线OC沿y轴向下平移,记为l2,若直线l2过点D,与直线l1交于点E,求△BDE的面积.
22.(10分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).
(2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?
(3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?
23.(10分)已知关于x的一元二次方程有两个不相等的实数根.
求k的取值范围;
若k为负整数,求此时方程的根.
24.(10分)解方程:3(x﹣4)2=﹣2(x﹣4)
25.(12分)为测量某特种车辆的性能,研究制定了行驶指数,而的大小与平均速度和行驶路程有关(不考虑其他因素),由两部分的和组成,一部分与成正比,另一部分与成正比.在实验中得到了表格中的数据:
(1)用含和的式子表示;
(2)当行驶指数为,而行驶路程为时,求平均速度的值;
(3)当行驶路程为时,若行驶指数值最大,求平均速度的值.
26.(12分)如图为一机器零件的三视图.
(1)请写出符合这个机器零件形状的几何体的名称;
(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、B
4、D
5、A
6、B
7、D
8、D
9、B
10、B
11、A
12、C
二、填空题(每题4分,共24分)
13、 (1,)或(-1,-)
14、2.3
15、y=1(x﹣3)1﹣1.
16、1
17、1.
18、(x﹣1)2=1
三、解答题(共78分)
19、(1)证明见解析;(2)2.
20、(1)证明见解析;(2)BD=.
21、 (1)直线I1的解析式:y=2x+4,直线OC解析式y=x;(2)S△BDE=16.
22、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.
23、();()时,,.
24、x1=4,x2=.
25、(1);(2)50 km/h;(3)90 km/h.
26、(1)直三棱柱;(2)
(元)
19
20
21
30
(件)
62
60
58
40
速度
路程
指数
相关试卷
这是一份广东省汕头市澄海区2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共9页。
这是一份2023-2024学年广东省汕头市潮阳区数学九上期末达标检测试题含答案,共7页。试卷主要包含了如果,那么=,下列事件中为必然事件的是,若反比例函数的图象经过点等内容,欢迎下载使用。
这是一份广东省汕头市澄海区2023-2024学年九年级上学期1月期末数学试题,共4页。