2023-2024学年广东省深圳市北环中学九上数学期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,与正方形ABCD的两边AB,AD相切,且DE与相切于点E.若的半径为5,且,则DE的长度为( )
A.5B.6C.D.
2.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为( )
A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)
3.如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=50°,则∠ADC为( )
A.40°B.50°C.80°D.100°
4.图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是( )
A.B.C.D.
5.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是
A.50(1+x2)=196B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196
6.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高(点在同一条直线上).已知小明身高是,则楼高为( )
A.B.C.D.
7.已知二次函数,则下列说法:①其图象的开口向上;②其图象的对称轴为直线;③其图象顶点坐标为;④当时,随的增大而减小.其中说法正确的有( )
A.1个B.2个C.3个D.4个
8.下列结论中,错误的有:( )
①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;
③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.
A.1个B.2个C.3个D.4个
9.在x2□2xy□y2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )
A.1B.C.D.
10.函数与抛物线的图象可能是( ).
A.B.C.D.
11.抛物线y =ax2+bx+c图像如图所示,则一次函数y =-bx-4ac+b2与反比例函数在同一坐标系内的图像大致为( )
A.B.C.D.
12.一元二次方程 x2 +x=0的根是 ( )
A.x1=0,x2=1B.x1=0,x2=﹣1C.x1=x2=0D.x1=x2=1
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,在点O的异侧将△OAB缩小为原来的,则点B的对应点的坐标是________.
14.如图,、、所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是____.(用“<”连接)
15.把两块同样大小的含角的三角板的直角重合并按图1方式放置,点是两块三角板的边与的交点,将三角板绕点按顺时针方向旋转到图2的位置,若,则点所走过的路程是_________.
16.如图,在直角坐标系中,点,点,过点的直线垂直于线段,点是直线上在第一象限内的一动点,过点作轴,垂足为,把沿翻折,使点落在点处,若以,,为顶点的三角形与△ABP相似,则满足此条件的点的坐标为__________.
17.若整数使关于的二次函数的图象在轴的下方,且使关于的分式方程有负整数解,则所有满足条件的整数的和为__________.
18.如图,由边长为1的小正方形组成的网格中,点为格点(即小正方形的顶点),与相交于点,则的长为_________.
三、解答题(共78分)
19.(8分)如图,点P是上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.
小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.
下面是小元的探究过程,请补充完整:
(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:
①经测量m的值是 (保留一位小数).
②在AP,PC,AC的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;
(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).
20.(8分)经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.
(1)求出y与x的函数关系式
(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?
(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.
21.(8分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.
(1)这50名学生每人一周内的零花钱数额的平均数是_______元/人;
(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为5元的人数所占的圆心角度数是_____度;
(3)一周内的零花钱数额为20元的有5人,其中有2名是女生, 3名是男生,现从这5人中选2名进行个别教育指导,请用画树状图或列表法求出刚好选中2名是一男一女的概率.
22.(10分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由
23.(10分)一次函数的图像与x轴相交于点A,与y轴相交于点B,二次函数图像经过点A、B,与x轴相交于另一点C.
(1)求a、b的值;
(2)在直角坐标系中画出该二次函数的图像;
(3)求∠ABC的度数.
24.(10分)如图,抛物线经过A(﹣1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:
(1)求抛物线的解析式及顶点D的坐标;
(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为
25.(12分)矩形的长和宽分别是4cm, 3cm ,如果将长和宽都增加x cm ,那么面积增加ycm2
(1)求y与x之间的关系式.
(2)求当边长增加多少时,面积增加8 cm2 .
26.(12分)某校组织学生参加“安全知识竞赛”(满分为分),测试结束后,张老师从七年级名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:
(1)张老师抽取的这部分学生中,共有 名男生, 名女生;
(2)张老师抽取的这部分学生中,女生成绩的众数是 ;
(3)若将不低于分的成绩定为优秀,请估计七年级名学生中成绩为优秀的学生人数大约是多少.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、A
4、C
5、C
6、B
7、B
8、B
9、C
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、 (-2,)
14、r3 <r2 <r1
15、
16、或
17、
18、
三、解答题(共78分)
19、(1)①3.0;②AP的长度是自变量,PC的长度和AC的长度都是这个自变量的函数;(答案不唯一);(2)见解析; (3)2.3或4.2
20、(1)当1≤x<50时,y=﹣2x2+180x+2000,当50≤x≤90时,y=﹣120x+12000;(2)
第45天时,当天销售利润最大,最大利润是6050元;(3)该商品在销售过程中,共41天每天销售利润不低于4800元.
21、 (1)12;(2)72;(3).
22、 (1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;
(3) A方案利润更高.
23、(1),b=6;(2)见解析;(3)∠ABC=45°
24、(1) ,D(1,4);(2) PD+PH 最小值
25、(1)y=(4+x)(3+x)-12=x2+7x;(2)边长增加1cm时,面积增加8 cm2.
26、(1),(2);(3)(人)
AP/cm
0
1.00
2.00
3.00
4.00
5.00
6.00
PC/cm
0
1.21
2.09
2.69
m
2.82
0
AC/cm
0
0.87
1.57
2.20
2.83
3.61
6.00
时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200-2x
广东省深圳市桃源中学2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份广东省深圳市桃源中学2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图所示,给出下列条件,抛物线如图所示,给出以下结论等内容,欢迎下载使用。
2023-2024学年广东省深圳市罗湖区文锦中学九上数学期末联考试题含答案: 这是一份2023-2024学年广东省深圳市罗湖区文锦中学九上数学期末联考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年广东省深圳市十校联考九上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年广东省深圳市十校联考九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了方程x2﹣9=0的解是,已知函数y=ax2-2ax-1等内容,欢迎下载使用。