2023-2024学年江苏省苏州市吴中学区统考数学九上期末预测试题含答案
展开
这是一份2023-2024学年江苏省苏州市吴中学区统考数学九上期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数的最小值是,如图,四边形内接于,若,则等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么csB的值是( )
A.B.C.D.
2.如图,将△ABC绕点A顺时针旋转 60°得到△AED,若线段AB=3,则BE=( )
A.2B.3C.4D.5
3.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则扇形BOC的面积为( )
A.B.C.πD.
4.△ABC在网络中的位置如图所示,则cs∠ACB的值为( )
A.B.C.D.
5.二次函数的最小值是 ( )
A.2B.2C.1D.1
6.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )
A.方差B.平均数C.众数D.中位数
7.若式子在实数范围内有意义,则的取值范围是( )
A.B.C.D.
8.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )
A.8B.6C.4D.5
9.如图,四边形内接于,若,则( )
A.B.C.D.
10.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )
A.△ABEB.△ACFC.△ABDD.△ADE
11.矩形不具备的性质是( )
A.是轴对称图形B.是中心对称图形C.对角线相等D.对角线互相垂直
12.用10长的铝材制成一个矩形窗框,使它的面积为6.若设它的一条边长为,则根据题意可列出关于的方程为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(3,4),则点F的坐标是_____.
14.已知线段a=4,b=16,则a,b的比例中项线段的长是_______.
15.质地均匀的骰子,6个面上分别标有数字1,2,3,4,5,6.同时抛掷这样的两枚骰子,落地后朝上的两个面上的数字之和为4的倍数的概率为__________.
16.用长的铁丝做一个长方形框架,设长方形的长为,面积为,则关于的函数关系式为__________.
17.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
18.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为 .
三、解答题(共78分)
19.(8分)为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.
(1)该社区九月份购买甲、乙两种绿色植物各多少盆?
(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠元,十月份乙种绿色植物每盆的价格比九月份的价格优惠.因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了,十为份购买乙种绿色植物的数量比九月份的数量增加了.若该社区十月份的总花费与九月份的总花费恰好相同,求的值.
20.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).
(1)求一次函数y=kx+b的解析式;
(2)求△BOC的面积;
(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为 .
21.(8分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.
(1)若想要这种童装销售利润每天达到 1200 元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?
(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?
22.(10分)某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠. 各商场的优惠条件如下:
甲商场优惠条件:第一台按原价收费,其余的每台优惠;
乙商场优惠条件:每台优惠.
设公司购买台电脑,选择甲商场时, 所需费用为元,选择乙商场时,所需费用为元,请分别求出与之间的关系式.
什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?
现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?
23.(10分)如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.
(1)求此抛物线的解析式;
(2)求的面积;
(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.
24.(10分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60°,底端D的仰角为30°,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为45°(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).
25.(12分)如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).
(1)求该抛物线的解析式;
(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;
(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.
26.(12分)如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点.
(1)求证:DE为⊙O的切线;
(2)若DE=3,AC=8,求直径AB的长.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、B
4、B
5、B
6、A
7、C
8、D
9、C
10、B
11、D
12、A
二、填空题(每题4分,共24分)
13、(6,).
14、1
15、
16、或
17、y=-5(x+2)2-1
18、1.
三、解答题(共78分)
19、(1)该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)a的值为1
20、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).
21、(1)每件童装应降价20元,(2)当x=15时,函数有最大值,即童装一天的销售利润最多为1250元.
22、(1),;(2)当购买台时,两家商场的收费相同;当购买电脑台数大于时,甲商场购买更优惠; 当购买电脑台数小于时,乙商场购买更优惠;(3)从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.
23、(1)y=﹣x2+x+2;(2);(3)存在一点P或,使它到x轴的距离为1
24、广告牌的高度为54.6米.
25、(1)y=x2+2x+1;(2)5;(3)M(,﹣)或(﹣,)
26、(1)证明见解析;(3)1.
相关试卷
这是一份2023-2024学年江苏省苏州市吴中学、吴江、相城区九上数学期末统考试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列命题是真命题的是,函数y=mx2+等内容,欢迎下载使用。
这是一份江苏省苏州吴中学区2023-2024学年数学九上期末调研试题含答案,共8页。
这是一份2023-2024学年江苏省苏州市吴中学区横泾中学数学九年级第一学期期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,对于反比例函数y=, 见解析,B2,C2等内容,欢迎下载使用。