2023-2024学年广东省佛山市南海区九年级数学第一学期期末学业水平测试模拟试题含答案
展开
这是一份2023-2024学年广东省佛山市南海区九年级数学第一学期期末学业水平测试模拟试题含答案,共8页。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼( )
A.条B.条C.条D.条
2.若两个最简二次根式和是同类二次根式,则n的值是( )
A.﹣1B.4或﹣1C.1或﹣4D.4
3.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则线段CD的长为( )
A.2B.C.3D.
4.《九章算术》是我国古代第一部自成体系的数学专著,书中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深两寸,锯道长八寸,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深2寸(ED=2寸),锯道长8寸”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算圆形木材的直径AC是( )
A.5寸B.8寸C.10寸D.12寸
5.已知,一次函数与反比例函数在同一直角坐标系中的图象可能( )
A.B.
C.D.
6.抛物线y=-2(x+3)2-4的顶点坐标是:
A.(3,-4)B.(-3,4)C.(-3,-4)D.(-4,3)
7.若在实数范围内有意义,则的取值范围是( )
A.B.C.D.
8.丽华根据演讲比赛中九位评委所给的分数作了如下表格:
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.平均数B.众数C.方差D.中位数
9.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.8B.9C.10D.11
10.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为( )
A.5cmB.10cmC.20cmD.30cm
11.如图,在平面直角坐标系中,将正方形绕点逆时针旋转45°后得到正方形.依此方式,绕点连续旋转2020次,得到正方形,如果点的坐标为,那么点的坐标为( )
A.B.C.D.
12.如图,中,,,,则( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,扇形OAB的圆心角为110°,C是上一点,则∠C=_____°.
14.如图,在△ABC中,∠ACB=90°,AC=6,AB=1.现分别以点A、点B为圆心,以大于AB相同的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若将△BDE沿直线MN翻折得△B′DE,使△B′DE与△ABC落在同一平面内,连接B′E、B′C,则△B′CE的周长为_____.
15.若,则 _______.
16.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,若,则阴影部分图形的周长为______结果保留.
17.如图,在一个正方形围栏中均为地散步着许多米粒,正方形内有一个圆(正方形的内切圆)一只小鸡在围栏内啄食,则小鸡正在圆内区域啄食的概率为________.
18.一元二次方程的根是_____.
三、解答题(共78分)
19.(8分)如图,在中,,,以为顶点在边上方作菱形,使点分别在边上,另两边分别交于点,且点恰好平分.
(1)求证: ;
(2)请说明:.
20.(8分)如图,已知抛物线经过点A(1,0)和B(0,3),其顶点为D.设P为该抛物线上一点,且位于抛物线对称轴右侧,作PH⊥对称轴,垂足为H,若△DPH与△AOB相似
(1)求抛物线的解析式
(2)求点P的坐标
21.(8分)如图,利用的墙角修建一个梯形的储料场,其中,并使,新建墙上预留一长为1米的门.如果新建墙总长为15米,那么怎样修建才能使储料场的面积最大?最大面积多少平方米?
22.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).
(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.
23.(10分)如图,以等腰△ABC的一腰AC为直径作⊙O,交底边BC于点D,过点D作腰AB的垂线,垂足为E,交AC的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)证明:∠CAD=∠CDF;
(3)若∠F=30°,AD=,求⊙O的面积.
24.(10分)(1)若正整数、,满足,求、的值;
(2)已知如图,在中,,,点在边上移动(不与点,点重合),将沿着直线翻折,点落在射线上点处,当为一个含内角的直角三角形时,试求的长度.
25.(12分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.
(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.
26.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?
(2)在飞行过程中,小球从飞出到落地所用时间是多少?
(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、D
4、C
5、A
6、C
7、A
8、D
9、A
10、B
11、A
12、B
二、填空题(每题4分,共24分)
13、1
14、3
15、1
16、+1.
17、
18、
三、解答题(共78分)
19、(1)证明见解析;(2)证明见解析.
20、(1)y=x2-4x+3;(2)(5,8)或(,-).
21、当与垂直的墙长为米时,储料场面积最大值为平方米
22、(1)图见解析;(2)图见解析;路径长π.
23、(1)见解析;(2)见解析;(3)π
24、(1)或;(2)或.
25、(1),;(2)
26、(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.
平均数
中位数
众数
方差
8.5
8.3
8.1
0.15
相关试卷
这是一份广东省佛山市南海区狮山镇2023-2024学年九年级数学第一学期期末综合测试试题含答案,共7页。试卷主要包含了已知与各边相切于点,,则的半径,反比例函数y=的图象经过点等内容,欢迎下载使用。
这是一份广东省肇庆市2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案,共8页。
这是一份2023-2024学年广东省佛山市南海区里水镇数学九上期末学业水平测试试题含答案,共7页。试卷主要包含了下列函数是二次函数的是,已知点A等内容,欢迎下载使用。