2023-2024学年山西省阳泉市数学九年级第一学期期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,从半径为5的⊙O外一点P引圆的两条切线PA,PB(A,B为切点),若∠APB=60°,则四边形OAPB的周长等于( )
A.30B.40C.D.
2.方程的根是( )
A.B.C.,D.,
3.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为( )
A.B.C.D.
4.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4B.6.25C.7.5D.9
5.用配方法解方程x2+1=8x,变形后的结果正确的是( )
A.(x+4)2=15B.(x+4)2=17C.(x-4)2=15D.(x-4)2=17
6.把函数y=﹣3x2的图象向右平移2个单位,所得到的新函数的表达式是( )
A.y=﹣3x2﹣2B.y=﹣3(x﹣2)2C.y=﹣3x2+2D.y=﹣3(x+2)2
7.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4则四边形DBCE的面积是( )
A.6B.9C.21D.25
8.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A.70°B.80°C.84°D.86°
9.某篮球队14名队员的年龄如表:
则这14名队员年龄的众数和中位数分别是( )
A.18,19B.19,19C.18,4D.5,4
10.要将抛物线平移后得到抛物线,下列平移方法正确的是( )
A.向左平移1个单位,再向上平移2个单位.B.向左平移1个单位,再向下平移2个单位.
C.向右平移1个单位,再向上平移2个单位.D.向右平移1个单位,再向下平移2个单位.
11.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )
A.27°B.34°C.36°D.54°
12.关于的一元二次方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.不能确定
二、填空题(每题4分,共24分)
13.如果二次根式有意义,那么的取值范围是_________.
14.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).
15.在一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中有3个红球,且从布袋中随机摸出1个球是红球的概率是三分之一 ,则白球的个数是______
16.如图,OA、OB是⊙O的半径,CA、CB是⊙O的弦,∠ACB=35°,OA=2,则图中阴影部分的面积为_____.(结果保留π)
17.如果,那么=_____.
18.如图,在坐标系中放置一菱形,已知,,先将菱形沿轴的正方向无滑动翻转,每次翻转,连续翻转2019次,点的落点依次为,,,…,则的坐标为__________.
三、解答题(共78分)
19.(8分)已知:如图,在△ABC中,AB=AC,点D、E分别在边BC、DC上,AB2 =BE · DC ,DE:EC=3:1 ,F是边AC上的一点,DF与AE交于点G.
(1)找出图中与△ACD相似的三角形,并说明理由;
(2)当DF平分∠ADC时,求DG:DF的值;
(3)如图,当∠BAC=90°,且DF⊥AE时,求DG:DF的值.
20.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E
(1)求证:AC平分∠DAE;
(2)若AB=6,BD=2,求CE的长.
21.(8分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.
22.(10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=AB•AD;
(2)求证:CE∥AD;
(3)若AD=5,AB=8,求的值.
23.(10分)某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.
(1)第一次购进的甲、乙两种水果各多少千克?
(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.
24.(10分)空地上有一段长为am的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为110m.
(1)已知a=30,矩形菜园的一边靠墙,另三边一共用了110m木栏,且围成的矩形菜园而积为1000m1.如图1,求所利用旧墙AD的长;
(1)已知0<a<60,且空地足够大,如图1.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.
25.(12分)如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长;
(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
26.(12分)如图,点是反比例函数上一点,过点作轴于点,点为轴上一点,连接.
(1)求反比例函数的解析式;
(2)求的面积.
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、B
4、A
5、C
6、B
7、C
8、B
9、A
10、D
11、C
12、A
二、填空题(每题4分,共24分)
13、x≤1
14、y=x2+2x(答案不唯一).
15、6
16、
17、
18、(2326,0)
三、解答题(共78分)
19、(1)△ABE、△ADC,理由见解析;(2);(3)
20、(1)见解析;(2)
21、详见解析.
22、(1)证明见解析(2)证明见解析(3)
23、(1)第一次购进甲种水果200千克,购进乙种水果10千克;(2)m的值为1.
24、(1)旧墙AD的长为10米;(1)当0<a<40时,围成长和宽均为米的矩形菜园面积最大,最大面积为平方米;当40≤a<60时,围成长为a米,宽为米的矩形菜园面积最大,最大面积为(60﹣)平方米.
25、(1)(8,0),;(2)(6,1);(3)①,②的长为或.
26、(1);(2)的面积为1.
年龄(岁)
18
19
20
21
人数
5
4
3
2
山西省平定县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份山西省平定县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了一组数据等内容,欢迎下载使用。
山西省阳泉市名校2023-2024学年九上数学期末学业质量监测试题含答案: 这是一份山西省阳泉市名校2023-2024学年九上数学期末学业质量监测试题含答案,共8页。试卷主要包含了已知2a=3b等内容,欢迎下载使用。
2023-2024学年山西省阳泉市郊区数学九年级第一学期期末联考模拟试题含答案: 这是一份2023-2024学年山西省阳泉市郊区数学九年级第一学期期末联考模拟试题含答案,共9页。试卷主要包含了的绝对值是等内容,欢迎下载使用。