2023-2024学年广东省深圳南山区五校联考数学九上期末学业水平测试试题含答案
展开
这是一份2023-2024学年广东省深圳南山区五校联考数学九上期末学业水平测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列命题错误的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.已知线段a是线段b,c的比例中项,则下列式子一定成立的是( )
A.B.C.D.
2.如图,点是上的点,,则是( )
A.B.C.D.
3.如果函数的图象与轴有公共点,那么的取值范围是( )
A.B.C.D.
4.如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )
A.B.C.D.
5.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O'A'B',A的对应点A'是直线上一点,则点B与其对应点B'间的距离为( )
A.3B.4C.5D.6
6.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为( )
A.2cmB.4cmC.6cmD.8cm
7.下列命题错误的是( )
A.对角线互相垂直平分的四边形是菱形
B.一组对边平行,一组对角相等的四边形是平行四边形
C.矩形的对角线相等
D.对角线相等的四边形是矩形
8.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是( )
A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1
C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2
9.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于( )
A.(2+2)cmB.(2﹣2)cmC.(+1)cmD.(﹣1)cm
10.已知菱形的周长为40 cm,两对角线长度比为3:4,则对角线长分别为( )
A.12 cm.16 cmB.6 cm,8 cmC.3 cm,4 cmD.24 cm,32 cm
11.一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是
A.60°B.90°C.120°D.180°
12.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的最大整数是( )
A.1B.0C.﹣1D.﹣2
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.
14.如图所示,已知:点,,.在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,…,则第个等边三角形的周长等于 .
15.已知扇形的面积为3πcm2,半径为3cm,则此扇形的圆心角为_____度.
16.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.
17.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.
18.二次函数y=3x2+3的最小值是__________.
三、解答题(共78分)
19.(8分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.
20.(8分)某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.
(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;
(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?
21.(8分)如图,在平面直角坐标系中,正比例函数的图象与反比例函数的图象经过点.
(1)分别求这两个函数的表达式;
(2)将直线向上平移个单位长度后与轴交于,与反比例函数图象在第一象限内的交点为,连接,,求点的坐标及的面积.
22.(10分)如图,在平面直角坐标系中,抛物线与轴交于点,点 的坐标分别是,与轴交于点.点在第一、二象限的抛物线上,过点作轴的平行线分别交轴和直线于点、.设点的横坐标为,线段的长度为.
⑴求这条抛物线对应的函数表达式;
⑵当点在第一象限的抛物线上时,求与之间的函数关系式;
⑶在⑵的条件下,当时,求的值.
23.(10分)4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?
24.(10分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;
(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.
25.(12分)如图,在平面直角坐标系中,已知抛物线与轴交于、两点,与轴交于点,其顶点为点,点的坐标为(0,-1),该抛物线与交于另一点,连接.
(1)求该抛物线的解析式,并用配方法把解析式化为的形式;
(2)若点在上,连接,求的面积;
(3)一动点从点出发,以每秒1个单位的速度沿平行于轴方向向上运动,连接,,设运动时间为秒(>0),在点的运动过程中,当为何值时,?
26.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).
⑴在平面直角坐标系中画出△ABC关于原点对称的△A1B1C1;
⑵把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.请写出:
①旋转角为 度;
②点B2的坐标为 .
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、D
4、C
5、C
6、B
7、D
8、D
9、B
10、A
11、B
12、B
二、填空题(每题4分,共24分)
13、(,).
14、
15、120
16、4π
17、y=1(x﹣3)1﹣1.
18、1.
三、解答题(共78分)
19、13.5m
20、(1);(2)需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块
21、(1);;(2)
22、(1);(2)当时, ,当时, ;(3)或.
23、(1);(2);(3)x=1.
24、(1);(2)
25、(1);(2);(3)
26、⑴详见解析;⑵ ①90 ;②(6,2)
相关试卷
这是一份2023-2024学年深圳南山区六校联考数学九上期末调研模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,一人乘雪橇沿如图所示的斜坡等内容,欢迎下载使用。
这是一份2023-2024学年广东省汕头潮阳区五校联考数学九上期末学业水平测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份广东省潮州潮安区五校联考2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。