2023-2024学年江西省赣州市赣县数学九年级第一学期期末达标检测试题含答案
展开
这是一份2023-2024学年江西省赣州市赣县数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,一元二次方程的解是,在 中,,,,则 的值是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.在Rt△ABC中,∠C=90°,∠A=α,AC=3,则AB的长可以表示为( )
A. B. C.3sinαD.3csα
2.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C( )
A.54°B.27°C.36°D.46°
3.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1﹣x)2=100B.100(1﹣x)2=144C.144(1+x)2=100D.100(1+x)2=144
4.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
A.abc<0B.-3a+c<0
C.b2-4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c
5.如图,在平面直角坐标系中,若反比例函数过点,则的值为( )
A.B.C.D.
6.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为( )
A.65πB.60πC.75πD.70π
7.已知一个几何体如图所示,则该几何体的左视图是( )
A.B.C.D.
8.一元二次方程的解是( )
A.B.C.D.
9.在 中,,,,则 的值是( )
A.B.C.D.
10.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( )
A.B.C.D.
11.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tanD的值为( )
A.B.C.D.
12.如果将抛物线y=﹣x2﹣2向右平移3个单位,那么所得到的新抛物线的表达式是( )
A.y=﹣x2﹣5 B.y=﹣x2+1 C.y=﹣(x﹣3)2﹣2 D.y=﹣(x+3)2﹣2
二、填空题(每题4分,共24分)
13.地物线的部分图象如图所示,则当时,的取值范围是______.
14.在一个不透明的口袋中,装有1个红球若干个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为,则此口袋中白球的个数为____________.
15.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=4,CD=3,则⊙O的半径的长是______.
16.如图,菱形AD的边长为2,对角线AC、BD相交于点O,BD=2,分别以AB、BC为直径作半圆,则图中阴影部分的面积为__________.
17.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.
18.如图,、、所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是____.(用“<”连接)
三、解答题(共78分)
19.(8分)已知:在平面直角坐标系中,抛物线()交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2 .
(1)求该抛物线的解析式及顶点D的坐标;
(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:
探究一:如图1,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;
探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.
20.(8分)定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.
(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A= 度;
(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分线,
①求证:△BDC是“近直角三角形”;
②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.
(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.
21.(8分)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若tan∠P=,AD=6,求线段AE的长.
22.(10分)在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),
(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;
(Ⅱ)不论a取何实数,该抛物线都经过定点H.
①求点H的坐标;
②证明点H是所有抛物线顶点中纵坐标最大的点.
23.(10分)已知双曲线经过点B(2,1).
(1)求双曲线的解析式;
(2)若点与点都在双曲线上,且,直接写出、的大小关系.
24.(10分)已知,关于x的方程(m﹣1)x2+2x﹣2=0为一元二次方程,且有两个不相等的实数根,求m的取值范围.
25.(12分)小涛根据学习函数的经验,对函数的图像与性质进行了探究,下面是小涛的探究过程,请补充完整:
(1)下表是与的几组对应值
请直接写出:=, m=, n=;
(2)如图,小涛在平面直角坐标系中,描出了上表中已经给出的部分对应值为坐标的点,再描出剩下的点,并画出该函数的图象;
(3)请直接写出函数的图像性质:;(写出一条即可)
(4)请结合画出的函数图象,解决问题:若方程有三个不同的解,请直接写出的取值范围.
26.(12分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=3, AF=2, 求AE的长.
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、D
4、B
5、C
6、A
7、B
8、D
9、A
10、A
11、D
12、C
二、填空题(每题4分,共24分)
13、或
14、3
15、2.5
16、-
17、∠P=∠B(答案不唯一)
18、r3 <r2 <r1
三、解答题(共78分)
19、(1), D(-2,4).
(2)①当t=3时,W有最大值,W最大值=1.②存在.只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.
20、(1)20;(2)①见解析;②存在,CE=;(3)tan∠C的值为或.
21、(1)PC是⊙O的切线;(2)
22、(Ⅰ)a=﹣,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);②证明见解析.
23、(1);(2)
24、且
25、(1)1,1,0 (2)作图见解析 (3)必过点.(答案不唯一) (4)
26、(1)答案见解析;(2).
...
-2
-1
0
1
2
3
...
...
-8
-3
0
m
n
1
3
...
相关试卷
这是一份2023-2024学年江西省赣州市赣县区九年级(上)期末数学试卷(含解析),共24页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份江西省赣州市赣县区2023-2024学年九年级上学期期末数学试题(含答案),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省赣州市赣州七中学2023-2024学年九年级数学第一学期期末达标检测试题含答案,共8页。试卷主要包含了已知,则等于等内容,欢迎下载使用。