2023-2024学年河南省郑州市金水区为民中学九上数学期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如果关于x的一元二次方程有实数根,那么m的取值范围是( )
A.B.C.D.
2.如下图形中既是中心对称图形,又是轴对称图形的是( )
A.B.C.D.
3.已知二次函数的图象与轴的一个交点为(-1,0),对称轴是直线,则图象与轴的另一个交点是( )
A.(2,0)B.(-3,0)C.(-2,0)D.(3,0)
4.⊙O的半径为3,点P到圆心O的距离为5,点P与⊙O的位置关系是( )
A.无法确定B.点P在⊙O外C.点P在⊙O上D.点P在⊙O内
5.若函数y=的图象在第一、三象限内,则m的取值范围是( )
A.m>﹣3B.m<﹣3C.m>3D.m<3
6.如图,在中,是的直径,点是上一点,点是弧的中点,弦于点,过点的切线交的延长线于点,连接,分别交于点,连接.给出下列结论:①;②;③点是的外心;④.其中正确的是( )
A.①②③B.②③④C.①③④D.①②③④
7.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是( )
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.任意画一个三角形,其内角和是360°
D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
8.附城二中到联安镇为5公里,某同学骑车到达,那么时间t与速度(平均速度)v之间的函数关系式是( )
A.v=5tB.v=t+5C.v=D.v=
9.已知抛物线经过和两点,则n的值为( )
A.﹣2B.﹣4C.2D.4
10.如图,点A是以BC为直径的半圆的中点,连接AB,点D是直径BC上一点,连接AD,分别过点B、点C向AD作垂线,垂足为E和F,其中,EF=2,CF=6,BE=8,则AB的长是( )
A.4B.6C.8D.10
11.二次函数y=ax2+bx+c(a≠1)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,有下列结论:①b2﹣4ac>1;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=1.其中,正确的结论有( )
A.①③④B.①②④C.③④⑤D.①③⑤
12.下列方程中是一元二次方程的是( )
A.xy+2=1B.
C.x2=0D.ax2+bx+c=0
二、填空题(每题4分,共24分)
13.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=____.
14.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
15.如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).
16.如图,已知∠AOB=30°,在射线OA上取点O1,以点O1为圆心的圆与OB相切;在射线O1A上取点O2,以点O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以点O3为圆心,O3O2为半径的圆与OB相切……,若⊙O1的半径为1,则⊙On的半径是______________.
17.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,,与交于点,连接,若,,则_____.
18.如图,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,则△ABD与△ADC的面积比为________.
三、解答题(共78分)
19.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
20.(8分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.
(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;
(2)试通过计算说明,哪个山上的杨梅产量较稳定?
21.(8分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.
(1)求点D的坐标:
(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:
(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.
22.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
23.(10分)如图,在边长为个单位长度的小正方形组成的网格中,给出了△ABC格点(顶点是网格线的交点).请在网格中画出△ABC以A为位似中心放大到原来的倍的格点△AB1C1,并写出△ABC与△AB1C1,的面积比(△ABC与△AB1C1,在点A的同一侧)
24.(10分)某企业设计了一款工艺品,每件成本40元,出于营销考虑,要求每件售价不得低于40元,但物价部门要求每件售价不得高于60元.据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每涨1元,每天就少售出2件,设单价上涨元.
(1)求当为多少时每天的利润是1350元?
(2)设每天的销售利润为,求销售单价为多少元时,每天利润最大?最大利润是多少?
25.(12分)如图,AB∥CD,AC与BD交于点E,且AB=6,AE=4,AC=1.
(1)求CD的长;
(2)求证:△ABE∽△ACB.
26.(12分)盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:
(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是 ;(精确到0.01)
(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、D
4、B
5、C
6、B
7、D
8、C
9、B
10、D
11、A
12、C
二、填空题(每题4分,共24分)
13、m
14、3或1.2
15、①③④
16、2n−1
17、.
18、1:1
三、解答题(共78分)
19、(1);(2)x>1;(3)P(﹣,0)或(,0)
20、(1)甲、乙样本的平均数分别为:40kg,40kg;产量总和为7840千克(2)乙.
21、(1)(4,3);(2)y=x+x;(3)
22、(1)见解析(2)见解析
23、见解析,
24、(1)时,每天的利润是1350元;(2)单价为60元时,每天利润最大,最大利润是1600元
25、(1);(2)见解析
26、(1)0.25;(2).
摸棋的次数n
100
200
300
500
800
1000
摸到黑棋的次数m
24
51
76
124
201
250
摸到黑棋的频率(精确到0.001)
0.240
0.255
0.253
0.248
0.251
0.250
河南省郑州市金水区为民中学2023-2024学年九年级数学第一学期期末联考试题含答案: 这是一份河南省郑州市金水区为民中学2023-2024学年九年级数学第一学期期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线,则下列说法正确的是,已知方程的两根为,则的值是等内容,欢迎下载使用。
河南省郑州市金水区金水区为民中学2023-2024学年数学九上期末统考试题含答案: 这是一份河南省郑州市金水区金水区为民中学2023-2024学年数学九上期末统考试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
河南省郑州市金水区2023-2024学年数学九上期末联考试题含答案: 这是一份河南省郑州市金水区2023-2024学年数学九上期末联考试题含答案,共8页。试卷主要包含了已知一组数据,已知点 P1等内容,欢迎下载使用。