2023-2024学年河南省郑州市名校九上数学期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.反比例函数y=(k≠0)的图象经过点(2,-4),若点(4,n)在反比例函数的图象上,则n等于( )
A.﹣8B.﹣4C.﹣D.﹣2
2.若关于 的一元二次方程 有实数根,则 的值不可能是( )
A.B.C.0D.2018
3.方程的根是( )
A.x=2B.x=0C.x1=0,x2=-2D. x1=0,x2=2
4.如图①,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为( ).
A.3B.4C.5D.6
5.下列事件中是随机事件的个数是( )
①投掷一枚硬币,正面朝上;
②五边形的内角和是540°;
③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;
④一个图形平移后与原来的图形不全等.
A.0B.1C.2D.3
6.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是( )
A.①②B.①③C.②③D.③④
7.方程的解是( )
A.B.C.或D.或
8.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )
A.B.C.D.
9.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于( )度.
A.42B.48C.46D.50
10.下列各式属于最简二次根式的是( )
A.B.C.D.
11.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为( )
A.B.C.D.
12.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克元,连续两次上涨后,售价上升到每千克元,则下列方程中正确的是( )
A.B.
C.D.
二、填空题(每题4分,共24分)
13.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.
14.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度(米)关于水珠与喷头的水平距离(米)的函数解析式是.水珠可以达到的最大高度是________(米).
15.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.
16.反比例函数的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=____________.
17.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x轴、y轴的交点分别为A,B,点P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0;②x=3是ax2+bx+3=0的一个根;③△PAB周长的最小值是+3.其中正确的是________.
18.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE// BC,EF//AB,且AD:DB=3:5,那么CF:CB 等于__________.
三、解答题(共78分)
19.(8分)阅读材料,解答问题:
观察下列方程:①;②;③;…;
(1)按此规律写出关于x的第4个方程为 ,第n个方程为 ;
(2)直接写出第n个方程的解,并检验此解是否正确.
20.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据图表信息,解答下列问题:
本次调查随机抽取了____ 名学生:表中 ;
补全条形统计图:
若全校有名学生,请你估计该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有多少人
21.(8分)如图所示,在中,于点E,于点F,延长AE至点G,使EG=AE,连接CG.
(1)求证:;
(2)求证:四边形EGCF是矩形.
22.(10分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.
23.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
24.(10分)如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.
(1)求抛物线的解析式;
(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;
(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.
25.(12分)画出如图所示的几何体的三种视图.
26.(12分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、C
4、B
5、C
6、A
7、C
8、B
9、A
10、B
11、C
12、A
二、填空题(每题4分,共24分)
13、y=x-,
14、10
15、
16、1
17、①②③
18、5:8
三、解答题(共78分)
19、(1)9,2n+1;(2)2n+1,见解析
20、(1)50,20,0.12;(2)详见解析;(3)1.
21、(1)见解析;(2)见解析.
22、该县投入教育经费的年平均增长率为20%
23、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
24、(3);(3)R(3,3);(3)3或.
25、见解析
26、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
河南省郑州市名校联考2023-2024学年数学九年级第一学期期末综合测试试题含答案: 这是一份河南省郑州市名校联考2023-2024学年数学九年级第一学期期末综合测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年河南省郑州市金水区为民中学九上数学期末联考试题含答案: 这是一份2023-2024学年河南省郑州市金水区为民中学九上数学期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
河南省郑州市金水区2023-2024学年数学九上期末联考试题含答案: 这是一份河南省郑州市金水区2023-2024学年数学九上期末联考试题含答案,共8页。试卷主要包含了已知一组数据,已知点 P1等内容,欢迎下载使用。