2023-2024学年海南省重点中学九上数学期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.在中,,、的对边分别是、,且满足,则等于( )
A.B.2C.D.
2.不等式组的解集是( )
A.B.C.D.
3.下列根式中属于最简二次根式的是( )
A.B.
C.D.
4.已知函数的图像上两点,,其中,则与的大小关系为( )
A.B.C.D.无法判断
5.直角三角形两直角边之和为定值,其面积与一直角边之间的函数关系大致图象是下列中的( )
A.B.C.D.
6.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是( )
A.B.
C.D.
7.下列方程是一元二次方程的是( )
A.B.C.D.
8.下列图形中,既是轴对称图形又是中心对称图形的共有( )
A.1个B.2个C.3个D.4个
9.若,那么的值是( )
A.B.C.D.
10.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是( )
A.2B.3C.4D.5
11.如果双曲线y=经过点(3、﹣4),则它也经过点( )
A.(4、3)B.(﹣3、4)C.(﹣3、﹣4)D.(2、6)
12.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程()与乙车行驶时间()之间的函数图象如图所示,则下列说法:①②甲的速度是60km/h;③乙出发80min追上甲;④乙车在货站装好货准备离开时,甲车距B地150km;⑤当甲乙两车相距30 km时,甲的行驶时间为1 h、3 h、h;其中正确的是__________.
14.抛物线的顶点坐标为________.
15.平面内有四个点A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,则满足题意的OC长度为整数的值可以是_______.
16.若方程x2﹣2x﹣1009=0有一个根是α,则2α2﹣4α+1的值为_____.
17.已知a、b是一元二次方程x2+x﹣1=0的两根,则a+b=_____.
18.如图,在反比例函数的图象上任取一点P,过P点分别作x轴,y轴的垂线,垂足分别为M,N,那么四边形PMON的面积为_____.
三、解答题(共78分)
19.(8分)已知是二次函数,且函数图象有最高点.
(1)求的值;
(2)当为何值时,随的增大而减少.
20.(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
21.(8分)解方程:x2-7x-18=0.
22.(10分)已知抛物线与轴交于两点,与轴交于点.
(1)求此抛物线的表达式及顶点的坐标;
(2)若点是轴上方抛物线上的一个动点(与点不重合),过点作轴于点,交直线于点,连结.设点的横坐标为.
①试用含的代数式表示的长;
②直线能否把分成面积之比为1:2的两部分?若能,请求出点的坐标;若不能,请说明理由.
(3)如图2,若点也在此抛物线上,问在轴上是否存在点,使?若存在,请直接写出点的坐标;若不存在,请说明理由.
23.(10分)新罗区某校元旦文艺汇演,需要从3名女生和1名男生中随机选择主持人.
(1)如果选择1名主持人,那么男生当选的概率是多少?
(2)如果选择2名主持人,用画树状图(或列表)求出2名主持人恰好是1男1女的概率.
24.(10分)观察下列各式:﹣1×=﹣1+,﹣=﹣,﹣=﹣
(1)猜想:﹣×= (写成和的形式)
(2)你发现的规律是:﹣×= ;(n为正整数)
(3)用规律计算:(﹣1×)+(﹣)+(﹣)+…+(﹣×)+(﹣×).
25.(12分)综合与探究:三角形旋转中的数学问题.
实验与操作: Rt△ABC中,∠ABC=90°,∠ACB=30°. 将Rt△ABC绕点A按顺时针方向旋转得到Rt△AB′C′(点B′,C′分别是点B,C的对应点). 设旋转角为α(0°<α<180°),旋转过程中直线B′B和线段CC′相交于点D.
猜想与证明:
(1)如图1,当AC′经过点B时,探究下列问题:
①此时,旋转角α的度数为 °;
②判断此时四边形AB′DC的形状,并证明你的猜想;
(2)如图2,当旋转角α=90°时,求证:CD=C′D;
(3)如图3,当旋转角α在0°<α<180°范围内时,连接AD,直接写出线段AD与C之间的位置关系(不必证明).
26.(12分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、D
4、B
5、A
6、D
7、C
8、B
9、A
10、B
11、B
12、D
二、填空题(每题4分,共24分)
13、②③
14、(-1,0)
15、1,3,3
16、1
17、-1
18、1
三、解答题(共78分)
19、(1);(2)当时,随的增大而减少
20、(1),;(2)P,.
21、
22、(1),顶点坐标为:;(2)①;②能,理由见解析,点的坐标为;(3)存在,点Q的坐标为:或.
23、(1);(2)见解析,
24、(1)﹣;(2)﹣;(3)﹣.
25、(1)①60;②四边形AB′DC是平行四边形,证明见解析.(2)证明见解析;(3)
26、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
内江市重点中学2023-2024学年九上数学期末调研模拟试题含答案: 这是一份内江市重点中学2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了一人乘雪橇沿如图所示的斜坡等内容,欢迎下载使用。
2023-2024学年德宏市重点中学九上数学期末调研模拟试题含答案: 这是一份2023-2024学年德宏市重点中学九上数学期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年巴中市重点中学九上数学期末调研模拟试题含答案: 这是一份2023-2024学年巴中市重点中学九上数学期末调研模拟试题含答案,共7页。试卷主要包含了如图,四边形内接于,若,则等内容,欢迎下载使用。