2023-2024学年湖北省广水市数学九年级第一学期期末考试模拟试题含答案
展开
这是一份2023-2024学年湖北省广水市数学九年级第一学期期末考试模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根的情况是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.若2a=5b,则 =( )
A.B.C.2D.5
2.已知,是方程的两个实数根,则的值是( )
A.2023B.2021C.2020D.2019
3.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为( )
A.5B.﹣1C.2D.﹣5
4.如图,在同一平面直角坐标系中,反比例函数与一次函数y=kx−1(k为常数,且k≠0)的图象可能是( )
A.B.C.D.
5.下列y和x之间的函数表达式中,是二次函数的是( )
A.B.C.D.y=x-3
6.一元二次方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
7.如图,A,B,C,D是⊙O上的四个点,弦AC,BD交于点P.若∠A=∠C=40°,则∠BPC的度数为( )
A.100°B.80°
C.50°D.40°
8.若,则一次函数与反比例函数在同一坐标系数中的大致图象是( )
A.B.
C. D.
9.若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为( )
A.B.C.D.
10.函数与函数在同一坐标系中的大致图象是( )
A.B.C.D.
11.不解方程,则一元二次方程的根的情况是( )
A.有两个相等的实数根B.没有实数根
C.有两个不相等的实数根D.以上都不对
12.如图,在中..是的角平分线.若在边上截取,连接,则图中等腰三角形共有( )
A.3个B.5个C.6个D.2个
二、填空题(每题4分,共24分)
13.已知,则=_____________.
14.如图,在△ABC中,AD是BC上的高,tanB=cs∠DAC,若sinC=,BC=12,则AD的长_____.
15.如图,圆形纸片⊙O半径为 5,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.
16.小明身高是1.6m,影长为2m,同时刻教学楼的影长为24m,则楼的高是_____.
17.把抛物线沿着轴向左平移3个单位得到的抛物线关系式是_________.
18.如图,BC⊥y轴,BC<OA,点A、点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为_____.
三、解答题(共78分)
19.(8分)如图1,抛物线的顶点为点,与轴的负半轴交于点,直线交抛物线W于另一点,点的坐标为.
(1)求直线的解析式;
(2)过点作轴,交轴于点,若平分,求抛物线W的解析式;
(3)若,将抛物线W向下平移个单位得到抛物线,如图2,记抛物线的顶点为,与轴负半轴的交点为,与射线的交点为.问:在平移的过程中,是否恒为定值?若是,请求出的值;若不是,请说明理由.
20.(8分)阅读下列材料,完成相应的学习任务:如图(1)在线段AB上找一点C,C把AB分为AC和BC两条线段,其中AC>BC.若AC,BC,AB满足关系AC2=BC•AB.则点C叫做线段AB的黄金分割点,这时=≈0.618,人们把叫做黄金分割数,我们可以根据图(2)所示操作方法我到线段AB的黄金分割点,操作步骤和部分证明过程如下:
第一步,以AB为边作正方形ABCD.
第二步,以AD为直径作⊙F.
第三步,连接BF与⊙F交于点G.
第四步,连接DG并延长与AB交于点E,则E就是线段AB的黄金分割点.
证明:连接AG并延长,与BC交于点M.
∵AD为⊙F的直径,
∴∠AGD=90°,
∵F为AD的中点,
∴DF=FG=AF,
∴∠3=∠4,∠5=∠6,
∵∠2+∠5=90°,∠5+∠4=90°,
∴∠2=∠4=∠3=∠1,
∵∠EBG=∠GBA,
∴△EBG∽△GBA,
∴=,
∴BG2=BE•AB…
任务:
(1)请根据上面操作步骤与部分证明过程,将剩余的证明过程补充完整;(提示:证明BM=BG=AE)
(2)优选法是一种具有广泛应用价值的数学方法,优选法中有一种0.618法应用了黄金分割数.为优选法的普及作出重要贡献的我国数学家是 (填出下列选项的字母代号)
A.华罗庚
B.陈景润
C.苏步青
21.(8分)在中,,以直角边为直径作,交于点,为的中点,连接、.
(1)求证:为切线.
(2)若,填空:
①当________时,四边形为正方形;
②当________时,为等边三角形.
22.(10分)如图1,抛物线与x轴相交于点A、点B,与y轴交于点C(0,3),对称轴为直线x=1,交x轴于点D,顶点为点E.
(1)求该抛物线的解析式;
(2)连接AC,CE,AE,求△ACE的面积;
(3)如图2,点F在y轴上,且OF=,点N是抛物线在第一象限内一动点,且在抛物线对称轴右侧,连接ON交对称轴于点G,连接GF,若GF平分∠OGE,求点N的坐标.
23.(10分)在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.
(1)证明:ΔABE≌ΔCAD.
(2)若CE=CP,求证∠CPD=∠PBD.
(3)在(2)的条件下,证明:点D是BC的黄金分割点.
24.(10分)一次函数与反比例函数的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.
(1)求一次函数与反比例函数的表达式;
(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.
25.(12分)已知二次函数.
(1)当时,求函数图象与轴的交点坐标;
(2)若函数图象的对称轴与原点的距离为2,求的值.
26.(12分)某小区在绿化工程中有一块长为20m,宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为102m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、B
4、B
5、A
6、A
7、B
8、C
9、D
10、B
11、C
12、B
二、填空题(每题4分,共24分)
13、6
14、1
15、16
16、19.2m
17、
18、6﹣或6或9﹣3
三、解答题(共78分)
19、(1);(2);(3)恒为定值.
20、(1)见解析;(2)A
21、(1)证明见解析;(2)①2;②.
22、(1)y=-x2+2x+3;(2)1;(3)点N的坐标为:(,).
23、(1)见解析;(2)见解析;(3)见解析
24、(1),;(2).
25、(1)和;(2)或-1.
26、人行通道的宽度为1米.
相关试卷
这是一份湖北省随州市广水市2023-2024学年数学九年级第一学期期末检测模拟试题含答案,共7页。试卷主要包含了二次函数y=﹣x2+2mx,对于方程,下列说法正确的是,已知,下列变形错误的是,点P在双曲线上,则k的值为等内容,欢迎下载使用。
这是一份湖北省广水市2023-2024学年九上数学期末经典试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年湖北省荆州市名校九年级数学第一学期期末考试模拟试题含答案,共7页。