2023-2024学年湖北省黄冈市名校数学九上期末达标检测试题含答案
展开这是一份2023-2024学年湖北省黄冈市名校数学九上期末达标检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.下列实数中,介于与之间的是( )
A.B.C.D.
2.若方程是关于的一元二次方程,则应满足的条件是( )
A.B.C.D.
3.已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有( )个.
A.1B.2C.3D.4
4.如图,、是的两条弦,若,则的度数为( )
A.B.C.D.
5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于( )
A.60°B.70°C.120°D.140°
6.已知关于的二次函数的图象在轴上方,并且关于的分式方程有整数解,则同时满足两个条件的整数值个数有( ).
A.2个B.3个C.4个D.5个
7.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是( )
A.B.
C.D.
8.如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2),则点C的坐标为( )
A.(,1)B.(1,)C.(1,2)D.(2,1)
9.如图,在中,,,垂足为点,如果,,那么的长是( )
A.4B.6C.D.
10.已知二次函数y=﹣2x2﹣4x+1,当﹣3≤x≤2时,则函数值y的最小值为( )
A.﹣15B.﹣5C.1D.3
11.如图,在△ABC中,AB=18,BC=15,csB=,DE∥AB,EF⊥AB,若=,则BE长为( )
A.7.5B.9C.10D.5
12.若二次函数的图象如图,与x轴的一个交点为(1,0),则下列各式中不成立的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.飞机着陆后滑行的距离(单位:)关于滑行的时间(单位:)的函数解析式是,飞机着陆后滑行______才能停下来.
14.我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是1.其中正确结论的个数是______.
15.《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为_________.
16.如图,在菱形ABCD中,边长为1,∠A=60˚,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去,…,则四边形A2019B2019C2019D2019的面积是_____.
17.如图,点G是△ABC的重心,过点G作GE//BC,交AC于点E,连结GC. 若△ABC的面积为1,则△GEC的面积为____________.
18.半径为5的圆内接正六边形的边心距为__________.
三、解答题(共78分)
19.(8分)已知线段AC
(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);
(2)若AC=8,BD=6,求菱形的边长.
20.(8分)如图,点D,E分别在△ABC的AB,AC边上,且DE∥BC,AG⊥BC于点G,与DE交于点F.已知,BC=10,AF=1.FG=2,求DE的长.
21.(8分)在2019年国庆期间,王叔叔的服装店进回一种女装,进价为400元,他首先在进价的基础上增加100元,由于销量非常好,他又连续两次涨价,结果标价比进价的2倍还多45元,求王叔叔这两次涨价的平均增长率是百分之多少?
22.(10分)已知y是x的反比例函数,且当时,.
(1)求y关于x的函数解析式;
(2)当时,求y的值.
23.(10分)如图,点O为∠ABC的边上的一点,过点O作OM⊥AB于点,到点的距离等于线段OM的长的所有点组成图形.图形W与射线交于E,F两点(点在点F的左侧).
(1)过点作于点,如果BE=2,,求MH的长;
(2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形公共点的个数,并证明.
24.(10分)某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?
(1)设提价了元,则这种衬衫的售价为___________元,销售量为____________件.
(2)列方程完成本题的解答.
25.(12分)对于实数a,b,我们可以用表示a,b两数中较大的数,例如,.类似的若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的取小函数.
(1)设,,则函数的图像应该是___________中的实线部分.
(2)请在下图中用粗实线描出函数的图像,观察图像可知当x的取值范围是_____________________时,y随x的增大而减小.
(3)若关于x的方程有四个不相等的实数根,则t的取值范围是_____________________.
26.(12分)如图,在Rt△ABC中,∠C=90°,点D是AC边上一点,DE⊥AB于点E.
(1)求证:△ABC∽△ADE;
(2)如果AC=8,BC=6,CD=3,求AE的长.
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、C
4、C
5、D
6、B
7、B
8、B
9、C
10、A
11、C
12、B
二、填空题(每题4分,共24分)
13、200
14、1
15、x(x-12)=864
16、
17、
18、
三、解答题(共78分)
19、(1)详见解析;(2)1.
20、2
21、
22、(1)y=;(2)-1
23、(1)MH=;(2)1个.
24、(1),;(2)(60+x−50)(800−1x)=1100,2,见解析
25、(1)D;(2)见解析;或;(3).
26、(1)见解析;(2)2
相关试卷
这是一份湖北省荆门市名校2023-2024学年九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了已知关于x的函数y=k等内容,欢迎下载使用。
这是一份2023-2024学年湖北省黄冈市季黄梅县数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,点E等内容,欢迎下载使用。
这是一份湖北省黄冈市黄梅实验中学2023-2024学年九上数学期末质量检测模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,若n<+1<n+1,则整数n为等内容,欢迎下载使用。