2023-2024学年湖北省武汉市武昌区八校数学九上期末考试试题含答案
展开这是一份2023-2024学年湖北省武汉市武昌区八校数学九上期末考试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,将y=﹣等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.为了解圭峰会城九年级女生身高情况,随机抽取了圭峰会城九年级100名女生,她们的身高x(cm)统计如下:
根据以上结果,随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是( )
A.0.25B.0.52C.0.70D.0.75
2.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表。如图是一个根据北京的地理位置设计的圭表,其中,立柱的高为。已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)作为( )
A.B.C.D.
3. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为的直径,弦,垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )
A.12寸B.13寸C.24寸D.26寸
4.如图,一次函数y=ax+a和二次函数y=ax2的大致图象在同一直角坐标系中可能的是( )
A.B.
C.D.
5.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为( )
A.4B.4C.6D.8
6.从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为( )
A.B.C.D.
7.一元二次方程x2-8x-1=0配方后可变形为()
A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=15
8.将y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为( )
A.y=﹣2B.y=2C.y=﹣3D.y=3
9.如图,中,内切圆和边、、分别相切于点、、,若,,则的度数是( )
A.B.C.D.
10.在圆,平行四边形、函数的图象、的图象中,既是轴对称图形又是中心对称图形的个数有( )
A.0B.1C.2D.3
11.关于的一元二次方程根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.根的情况无法判断
12.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为( )
A.15cmB.20cmC.25cmD.30cm
二、填空题(每题4分,共24分)
13.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_____.
14.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是__________L.
15.在正方形网格中,△ABC的位置如图所示,则sinB的值为 ______________
16.如图,在矩形纸片中,将沿翻折,使点落在上的点处,为折痕,连接;再将沿翻折,使点恰好落在上的点处,为折痕,连接并延长交于点,若,,则线段的长等于_____.
17.点(2,3)关于原点对称的点的坐标是_____.
18.如图,在△ABC中,D为AC边上一点,且∠DBA=∠C,若AD=2cm,AB=4cm,那么CD的长等于________cm.
三、解答题(共78分)
19.(8分)如图,直线与双曲线在第一象限内交于两点,已知.
(1)求的值及直线的解析式.
(2)根据函数图象,直接写出不等式的解集.
(3)设点是线段上的一个动点,过点作轴于点是轴上一点,当的面积为时,请直接写出此时点的坐标.
20.(8分)(1)已知二次函数y=x2+bx+c的图象经过点(1,﹣2)与(4,1),求这个二次函数的表达式;
(2)请更换第(1)题中的部分已知条件,重新设计一个求二次函数y=x2+bx+c表达式的题目,使所得到的二次函数与(1)题得到的二次函数相同,并写出你的求解过程.
21.(8分)如图,抛物线的图象过点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得?若存在,请求出点M的坐标;若不存在,请说明理由.
22.(10分)车辆经过某市收费站时,可以在4个收费通道 A、B、C、D中,可随机选择其中的一个通过.
(1)车辆甲经过此收费站时,选择A通道通过的概率是 ;
(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.
23.(10分)为倡导绿色出行,某市推行“共享单车”公益活动,在某小区分别投放甲、乙两种不同款型的共享单车,甲型、乙型单车投放成本分别为元和元,乙型车的成本单价比甲型车便宜元,但两种类型共享单车的投放量相同,求甲型共享单车的单价是多少元?
24.(10分)如图,的直径AB为20cm,弦,的平分线交于D,求BC,AD,BD的长.
25.(12分)如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.
(1)试求、的值,并写出该二次函数表达式;
(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:
①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?
②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?
26.(12分)如图,要在长、宽分别为40米、24米的矩形赏鱼池内建一个正方形的亲水平台.为了方便行人观赏,分别从东、南、西、北四个方向修四条等宽的小路与平台相连,若小路的宽是正方形平台边长的,小路与亲水平台的面积之和占矩形赏鱼池面积的,求小路的宽.
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、D
4、B
5、B
6、B
7、C
8、A
9、D
10、C
11、A
12、D
二、填空题(每题4分,共24分)
13、4个小支干.
14、1
15、
16、.
17、(-2,-3).
18、1
三、解答题(共78分)
19、(1),(2)解集为或(3)
20、(1)y=x2﹣4x+1;(2)题目见解析,求解过程见解析.
21、(1);(2)存在,点,周长为:;(3)存在,点M坐标为
22、(1);(2),图见解析
23、甲型共享单车的单价是元.
24、BC=16cm,AD=BD=10cm.
25、(1),;(2) ①当点运动到距离点个单位长度处,有;②当点运动到距离点个单位处时,四边形面积最小,最小值为.
26、小路宽为2米
组别(cm)
x<150
150≤x<155
155≤x<160
160≤x<165
x≥165
频数
2
23
52
18
5
相关试卷
这是一份湖北省武汉市武昌区省水二中学2023-2024学年九上数学期末考试模拟试题含答案,共7页。试卷主要包含了下列几何体的三视图相同的是,抛物线y=等内容,欢迎下载使用。
这是一份2023-2024学年湖北省武汉市蔡甸区八校联盟九上数学期末考试试题含答案,共8页。试卷主要包含了下列事件中,是必然事件的是,下列命题正确的是,如图,在中,,则的值为等内容,欢迎下载使用。
这是一份2023-2024学年湖北省武汉市武昌区拼搏联盟八上数学期末复习检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,,是的中点,若,,则等于,若,则分式等于等内容,欢迎下载使用。