2023-2024学年湖北省襄阳市襄州区黄龙中学九上数学期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.下列语句中,正确的有( )
A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦
C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴
2.在Rt△ABC中,∠C=900,∠B=2∠A,则csB等于( )
A.B.C.D.
3.下列事件中是随机事件的是( )
A.校运会上立定跳远成绩为10米
B.在只装有5个红球的袋中,摸出一个红球
C.慈溪市明年五一节是晴天
D.在标准大气压下,气温3°C 时,冰熔化为水
4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=(c≠0)在同一平面直角坐标系中的图象大致是( )
A.B.
C.D.
5.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则△PQD的面积为( )
A.B.C.D.
6.下列几何体中,主视图和左视图都是矩形的是( )
A.B.C.D.
7.如图,是的直径,,是圆周上的点,且,则图中阴影部分的面积为( )
A.B.C.D.
8.把图1的正方体切下一个角,按图2放置,则切下的几何体的主视图是( )
A.B.C.D.
9.抛物线y =ax2+bx+c图像如图所示,则一次函数y =-bx-4ac+b2与反比例函数在同一坐标系内的图像大致为( )
A.B.C.D.
10.若反比例函数图象上有两个点,设,则不经过第( )象限.
A.一B.二C.三D.四
11.如果,那么=( )
A.B.C.D.
12.一元二次方程x2-x=0的根是( )
A.x=1B.x=0C.x1=0,x2=1D.x1=0,x2=-1
二、填空题(每题4分,共24分)
13.如图,⊙的半径于点,连接并延长交⊙于点,连接.若,则的长为 ___ .
14.正的边长为,边长为的正的顶点与点重合,点分别在,上,将沿边顺时针连续翻转(如图所示),直至点第一次回到原来的位置,则点运动路径的长为 (结果保留)
15.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M、N在AC边上,若△OMN∽△BOC,点M的对应点是O,则CM=______.
16.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.
17.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.
18.如图,一副含和角的三角板和拼合在一个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为______.
三、解答题(共78分)
19.(8分)已知关于的方程的一个实数根是3,求另一根及的值.
20.(8分)如图,要在长、宽分别为40米、24米的矩形赏鱼池内建一个正方形的亲水平台.为了方便行人观赏,分别从东、南、西、北四个方向修四条等宽的小路与平台相连,若小路的宽是正方形平台边长的,小路与亲水平台的面积之和占矩形赏鱼池面积的,求小路的宽.
21.(8分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.
(1)求证:BD平分∠ABC;
(2) 当∠ODB=30°时,求证:BC=OD.
22.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转90°,得到线段PD,连接DB.
(1)请在图中补全图形;
(2)∠DBA的度数.
23.(10分)抛物线与轴交于A,B两点,与轴交于点C,连接BC.
(1)如图1,求直线BC的表达式;
(2)如图1,点P是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB面积最大时,一动点Q从点P从出发,沿适当路径运动到轴上的某个点G处,再沿适当路径运动到轴上的某个点H处,最后到达线段BC的中点F处停止,求当△PCB面积最大时,点P的坐标及点Q在整个运动过程中经过的最短路径的长;
(3)如图2,在(2)的条件下,当△PCB面积最大时,把抛物线向右平移使它的图象经过点P,得到新抛物线,在新抛物线上,是否存在点E,使△ECB的面积等于△PCB的面积.若存在,请求出点E的坐标,若不存在,请说明理由.
24.(10分)汛期到来,山洪暴发.下表记录了某水库内水位的变化情况,其中表示时间(单位:),表示水位高度(单位:),当时,达到警戒水位,开始开闸放水.
(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.
(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.
(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到.
25.(12分)△ABC在平面直角坐标系中如图:
(1)画出将△ABC绕点O逆时针旋转90°所得到的,并写出点的坐标.
(2)画出将△ABC关于x轴对称的,并写出点的坐标.
(3)求在旋转过程中线段OA扫过的图形的面积.
26.(12分)随着科学技术的不断进步,草莓的品种越来越多样化,某基地农户计划尝试购进牛奶草莓和巧克力草莓新品种共5000株,其中牛奶草莓成本每株5元,巧克力草莓成本每株8元.
(1)由于初次尝试该品种草莓种植,农户购进两种草莓品种的金额不得超过34000元,则牛奶草莓植株至少购进多少株?
(2)农户按(1)中牛奶草莓的最少进货量购进牛奶草莓巧克力草莓植株,经过几个月的精心培育,可收获草莓共计2500千克,农户在培育过程中共花费25000元.农户计划采用直接出售与生态采摘出售两种方式进行售卖,其中直接出售牛奶草莓的售价为每千克30元,直接出售巧克力草莓的售价为每千克40元,且两种草莓各出售了500千克.而生态采摘出售时,两种品种幕莓的采摘销售价格一样,且通过生态采摘把余下的草莓全部销售完,但采摘过程中会有0.6a%的损耗,其中生态采摘出售草莓的单价比直接出售巧克力草莓的单价还高3a%(0<a≤75),这样该农户经营草莓的总利润为65250元,求a的值.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、C
4、D
5、D
6、C
7、D
8、B
9、D
10、C
11、D
12、C
二、填空题(每题4分,共24分)
13、
14、
15、
16、6.4
17、
18、
三、解答题(共78分)
19、,另一根为4.
20、小路宽为2米
21、 (1)证明见解析;(2)证明见解析.
22、(1)见解析;(2)90°
23、(1)(2)点Q按照要求经过的最短路径长为(3)存在,满足条件的点E有三个,即(,),(,), (,)
24、 (1)见解析;(2)和;(3)预计水位达到.
25、 (1)(-3,2);(2)(2,-3);(3)S=
26、(1)牛奶草莓植株至少购进2株;(2)a的值为1.
0
2
4
6
8
10
12
14
16
18
20
14
15
16
17
18
14.4
12
10.3
9
8
7.2
湖北省襄阳市襄州区龙王中学2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份湖北省襄阳市襄州区龙王中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了方程等内容,欢迎下载使用。
湖北省襄阳襄州区五校联考2023-2024学年九上数学期末调研模拟试题含答案: 这是一份湖北省襄阳襄州区五校联考2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,﹣的绝对值为等内容,欢迎下载使用。
湖北省襄阳市襄州区2023-2024学年九上数学期末复习检测模拟试题含答案: 这是一份湖北省襄阳市襄州区2023-2024学年九上数学期末复习检测模拟试题含答案,共9页。试卷主要包含了要使有意义,则x的取值范围为等内容,欢迎下载使用。