2023-2024学年福建省厦门市思明区双十中学数学九上期末统考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.下列命题正确的是( )
A.有意义的取值范围是.
B.一组数据的方差越大,这组数据波动性越大.
C.若,则的补角为.
D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为
2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为( )
A.B.C.D.
3.下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
4.如图,AB是⊙O的直径,CD是⊙O的弦. 若∠BAD=24°, 则的度数为( )
A.24°B.56°C.66°D.76°
5.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线( )
A.B.
C.D.
6.如图,在平面直角坐标系中,函数与的图像相交于,两点,过点作轴的平行线,交函数的图像于点,连接,交轴于点,则的面积为( )
A.B.C.2D.
7.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度(单位:)与水平距离(单位:)近似满足函数关系(a≠0).下表记录了该同学将篮球投出后的与的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为( )
A.B.C.D.
8.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为
A.12B.20C.24D.32
9.抛物线的对称轴是( )
A.B.C.D.
10.已知,则的值是( )
A.B.C.D.
11.坡比常用来反映斜坡的倾斜程度.如图所示,斜坡AB坡比为( ).
A.:4B.:1C.1:3D.3:1
12.已知关于x的分式方程无解,关于y的不等式组的整数解之和恰好为10,则符合条件的所有m的和为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.一天早上,王霞从家出发步行上学,出发6分钟后王霞想起数学作业没有带,王霞立即打电话叫爸爸骑自行车把作业送来(接打电话和爸爸出门的时间忽略不计),同时王霞把速度降低到前面的一半.爸爸骑自行车追上王霞后立即掉头以原速赶往位于家的另一边的单位上班,王霞拿到作业后立即改为慢跑上学,慢跑的速度是最开始步行速度的2倍,最后王霞比爸爸早10分钟到达目的地.如图反映了王霞与爸爸之间的距离(米)与王霞出发后时间(分钟)之间的关系,则王霞的家距离学校有__________米.
14.如图,已知菱形的面积为,的长为,则的长为__________.
15.小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D的坐标为(2,0),则点E的坐标是_________.
16.计算:(π﹣3)0+(﹣)﹣2﹣(﹣1)2=_____.
17.计算sin60°tan60°-cs45°cs60°的结果为______.
18.如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是______.
三、解答题(共78分)
19.(8分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.
(1)求此抛物线的解析式和直线AB的解析式;
(2)如图①,动点E从O点出发,沿着OA方 向 以1个单位/秒的速度向终点A匀速运动,同时, 动点F从A点出发,沿着AB方向以个单位/ 秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?
(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.
20.(8分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
(1)请计算第几天该商品单价为25元/件?
(2)求网店第几天销售额为792元?
(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?
21.(8分)某单位800名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书数量,采用随机抽样的方法抽取30名职工的捐书数量作为样本,对他们的捐书数量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,
由图中给出的信息解答下列问题:
(1)补全条形统计图;
(2)求这30名职工捐书本数的平均数,写出众数和中位数;
(3)估计该单位800名职工共捐书多少本?
22.(10分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.
(1)根据图示填写下表:
(2)通过计算得知九(2)班的平均成绩为85分,请计算九(1)班的平均成绩.
(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.
(4)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?
23.(10分)山西是我国酿酒最早的地区之一,山西酿酒业迄今为止已有余年的历史.在漫长的历史进程中,山西人民酿造出品种繁多、驰名中外的美酒佳酿,其中以汾酒、竹叶青酒最为有名.某烟酒超市卖有竹叶青酒,每瓶成本价是元,经调查发现,当售价为元时,每天可以售出瓶,售价每降低元,可多售出瓶(售价不高于元)
(1)售价为多少时可以使每天的利润最大?最大利润是多少?
(2)要使每天的利润不低于元,每瓶竹叶青酒的售价应该控制在什么范围内?
24.(10分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.
(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;
(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.
25.(12分)某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:
(1)求样本中平均每条鱼的质量;
(2)估计鱼塘中该种鱼的总质量;
(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.
26.(12分)如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解析式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、A
4、C
5、A
6、B
7、C
8、D
9、A
10、A
11、A
12、C
二、填空题(每题4分,共24分)
13、1750
14、3
15、(3.76,0)
16、1
17、1
18、或
三、解答题(共78分)
19、(1)抛物线的解析式为y=﹣x2+2x+3,直线AB的解析式为y=﹣x+3;(2)t=或;(3)存在面积最大,最大值是,此时点P(,).
20、(1)第10天时该商品的销售单价为25元/件;(2)网店第26天销售额为792元;(3);这30天中第15天获得的利润最大,最大利润是元.
21、(1)补全图形见解析;(2)平均数是6本,众数是6本,中位数是6本.(3)该单位800名职工共捐书有4800本.
22、(1)见解析;(2)85分;(3)九(1)班成绩好;(4)九(1)班成绩稳定.
23、(1)每瓶竹叶青酒售价为元时,利润最大,最大利润为元;(2)要使每天利润不低于元,每瓶竹叶青酒售价应控制在元到元之间.
24、(1)列表见解析;(2).
25、(1)1.78kg;(2)1kg;(3)y=14x,0≤x≤1.
26、 (1)y=﹣x2﹣2x+3;(2)点P(,);(3)符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).
x (单位:m)
y (单位:m)
3.05
销售量n(件)
销售单价m(元/件)
班级
中位数(分)
众数(分)
九(1)
85
九(2)
100
数量/条
平均每条鱼的质量/kg
第1次捕捞
20
1.6
第2次捕捞
15
2.0
第3次捕捞
15
1.8
福建省厦门市思明区湖滨中学2023-2024学年九上数学期末联考试题含答案: 这是一份福建省厦门市思明区湖滨中学2023-2024学年九上数学期末联考试题含答案,共8页。试卷主要包含了抛物线的顶点坐标是等内容,欢迎下载使用。
福建省厦门市思明区逸夫中学2023-2024学年数学九上期末统考试题含答案: 这是一份福建省厦门市思明区逸夫中学2023-2024学年数学九上期末统考试题含答案,共9页。试卷主要包含了下列各式属于最简二次根式的是,如图等内容,欢迎下载使用。
2023-2024学年福建省厦门市思明区大同中学九上数学期末调研模拟试题含答案: 这是一份2023-2024学年福建省厦门市思明区大同中学九上数学期末调研模拟试题含答案,共9页。试卷主要包含了一副三角板,下列命题是真命题的是等内容,欢迎下载使用。