2023-2024学年贵州安龙县九上数学期末检测模拟试题含答案
展开
这是一份2023-2024学年贵州安龙县九上数学期末检测模拟试题含答案,共7页。试卷主要包含了方程2x等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.将半径为5的圆形纸片,按如图方式折叠,若和都经过圆心,则图中阴影部分的面积是( )
A.B.C.D.
2.如图,反比例函数和正比例函数的图象交于,两点,已知点坐标为若,则的取值范围是( )
A.B.C.或D.或
3.如图,中,,则的值为( )
A.B.C.D.
4.如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接.若,,则的长的最小值为( )
A.B.C.D.
5.设有12只型号相同的杯子,其中一等品7只,二等品2只,三等品3只。则从中任意取一只,是二等品的概率等于 ( )
A.B.C.D.
6.方程2x(x﹣5)=6(x﹣5)的根是( )
A.x=5B.x=﹣5C.=﹣5,=3D. =5,=3
7.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于( )
A.3:2B.3:1C.1:1D.1:2
8.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是( )
A.①③④B.②④⑤C.①③⑤D.①③④⑤
9.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为
A.12B.9C.6D.4
10.二次函数的图象如图所示,若关于的一元二次方程有实数根,则的最大值为( )
A.-7B.7C.-10D.10
11.方程x(x﹣1)=0的根是( )
A.0B.1C.0或1D.无解
12.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为( )
A.cmB.cmC.3cmD.cm
二、填空题(每题4分,共24分)
13.如图,若抛物线与直线交于,两点,则不等式的解集是______.
14.如图,为的直径,则_______________________.
15.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.
16.10件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是______.
17.在四边形ABCD中,AD=BC,AD∥BC.请你再添加一个条件,使四边形ABCD是菱形.你添加的条件是_________.(写出一种即可)
18.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .
三、解答题(共78分)
19.(8分)如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.
(1)当t= 时,两点停止运动;
(2)设△BPQ的面积面积为S(平方单位)
①求S与t之间的函数关系式;
②求t为何值时,△BPQ面积最大,最大面积是多少?
20.(8分)2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.
21.(8分)某地2016年为做好“精准扶贫”,投入资金1000万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1250万元.
(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
(2)在2018年异地安置的具体实施中,该地计划投入资金不低于400万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?
22.(10分)如图,锐角三角形中,,分别是,边上的高,垂足为,.
(1)证明:.
(2)若将,连接起来,则与能相似吗?说说你的理由.
23.(10分)如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.
(1)若,用向量、表示向量;
(2)若∠B=∠ACE,AB=6,AC=2,BC=9,求EG的长.
24.(10分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图,测得其灯臂长为灯翠长为,底座厚度为根据使用习惯,灯臂的倾斜角固定为,
(1)当转动到与桌面平行时,求点到桌面的距离;
(2)在使用过程中发现,当转到至时,光线效果最好,求此时灯罩顶端到桌面的高度(参考数据:,结果精确到个位).
25.(12分)已知二次函数y=(x-m)(x+m+4),其中m为常数.
(1)求证:不论m为何值,该二次函数的图像与x轴有公共点.
(2)若A(-1,a)和B(n,b)是该二次函数图像上的两个点,请判断a、b的大小关系.
26.(12分)天猫商城某网店销售童装,在春节即将将来临之际,开展了市场调查发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件;如果每件童装降价1元,那么平均每天可售出2件.
(1)假设每件童装降价元时,每天可销售 件,每件盈利 元;(用含人代数式表示)
(2)每件童装降价多少元时,平均每天盈利最多?每天最多盈利多少元?
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、D
4、A
5、B
6、D
7、D
8、D
9、B
10、B
11、C
12、A
二、填空题(每题4分,共24分)
13、
14、60°
15、1.
16、
17、此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.
18、.
三、解答题(共78分)
19、(1)1;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+2,当6<t≤1时,S=t2﹣10t+2,②t=3时,△PBQ的面积最大,最大值为3
20、
21、(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为50%;(2)今年该地至少有1400户享受到优先搬迁租房奖励.
22、(1)见解析;(2)能,理由见解析.
23、 (1) (2)EG=3.
24、(1)点到桌面的距离为;(2)灯罩顶端到桌面的高度约为.
25、(1)见解析;(2) ①当n=-3时,a=b;②当-3<n<-1时,a>b ;③当n<-3或n>-1时,a<b
26、(1)20+2x,;(2)降价为15元时,盈利最多为1250元
相关试卷
这是一份2023-2024学年贵州省遵义市名校九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了如图,P,已知抛物线的解析式为y=.等内容,欢迎下载使用。
这是一份2023-2024学年贵州省铜仁地区松桃县数学九上期末检测模拟试题含答案,共8页。
这是一份2023-2024学年贵州省仁怀市九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列说法错误的是,已知,则,下列说法中,正确的是等内容,欢迎下载使用。