2023-2024学年贵州省都匀市第六中学数学九上期末质量跟踪监视模拟试题含答案
展开
这是一份2023-2024学年贵州省都匀市第六中学数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图,,则下列比例式错误的是,关于x的一元二次方程x2+,方程的根是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是
A.当AC=BD时,四边形ABCD是矩形
B.当AB=AD,CB=CD时,四边形ABCD是菱形
C.当AB=AD=BC时,四边形ABCD是菱形
D.当AC=BD,AD=AB时,四边形ABCD是正方形
2.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为( ).
A.2B.3C.D.
3.如图,矩形AOBC,点C在反比例的图象上,若,则的长是( )
A.1B.2C.3D.4
4.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为( )
A.B.C.D.
5.如图,,则下列比例式错误的是( )
A.B.C.D.
6.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为( )
A.2B.0C.1D.2或0
7.如图,在四边形中,对角线,相交于点,且,.若要使四边形为菱形,则可以添加的条件是( )
A.B.C.D.
8.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为( )
A.B.
C.D.
9.方程的根是( )
A.5和B.2和C.8和D.3和
10.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是( )
A.①②B.①③④C.①②③⑤D.①②③④⑤
11.如图,⊙O的半径为1,点 O到直线 的距离为2,点 P是直线上的一个动点,PA切⊙O于点 A,则 PA的最小值是( )
A.1B.C.2D.
12.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0; ②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是( )
A.①③B.①③④C.①②③D.①②③④
二、填空题(每题4分,共24分)
13.如图所示,已知:点,,.在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,…,则第个等边三角形的周长等于 .
14.一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共______人.
15.抛物线的顶点坐标是______.
16.如图一次函数的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数的图象于Q,,则Q点的坐标为_____________
17.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是___cm.
18.在一个不透明的袋中有2个红球,若干个白球,它们除颜色外其它都相同,若随机从袋中摸出一个球,摸到红球的概率是,则袋中有白球_________个.
三、解答题(共78分)
19.(8分)一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量(单位:件)与销售单价(单位:元/件)之间满足一次函数关系,如图所示.
(1)求与之间的函数解析式,并写出自变量的取值范围;
(2)求每天的销售利润(单位:元)与销售单价之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)这名大学生计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
20.(8分)解答下列各题:
(1)计算:2cs31°﹣tan45°﹣;
(2)解方程:x2﹣11x+9=1.
21.(8分)已知二次函数(m 为常数).
(1)证明:不论 m 为何值,该函数的图像与 x 轴总有两个公共点;
(2)当 m 的值改变时,该函数的图像与 x 轴两个公共点之间的距离是否改变?若不变, 请求出距离;若改变,请说明理由.
22.(10分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.
(1)甲运动后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
23.(10分)某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和m的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。
24.(10分)已知关于的方程
(1)当m取何值时,方程有两个实数根;
(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.
25.(12分) “共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士.如图是四位院士(依次记为、、、).为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上、、、四个标号,然后背面朝上放置,搅匀后每个同学从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料,并做成小报.
(1)班长在四种卡片中随机抽到标号为C的概率为______.
(2)请用画树状图或列表的方法求小明和小华查找不同院士资料的概率.
26.(12分)如图,平行四边形中,,过点作于点,现将沿直线翻折至的位置,与交于点.
(1)求证:;
(2)若,,求的长.
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、B
4、C
5、A
6、B
7、D
8、C
9、C
10、C
11、B
12、C
二、填空题(每题4分,共24分)
13、
14、1
15、 (1,3)
16、 (2,)
17、.
18、6
三、解答题(共78分)
19、(1)();(2),每件销售单价为100元时,每天的销售利润最大,最大利润为2000元;(3)该产品的成本单价应不超过65元.
20、(1)1;(2)x1=1,x2=2.
21、(1)详见解析;(2)图像与轴两个公共点之间的距离为
22、(1)28cm;(2)3s;(3)7s
23、(1)50,12;(2)5,4;(3)336.
24、(1)m≥—;(2)x1=0,x2=2.
25、 (1);(2).
26、(1)见解析;(2)
相关试卷
这是一份贵州省长顺县联考2023-2024学年九上数学期末质量跟踪监视试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,随机事件是,如图,点,,都在上,若,则为等内容,欢迎下载使用。
这是一份贵州省兴义市2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共8页。
这是一份2023-2024学年陕西省合阳城关中学数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,以下事件属于随机事件的是,下列运算正确的是等内容,欢迎下载使用。