云南省昆明市石林县2023-2024学年数学九上期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如表.根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是( )
A.32分B.30分C.15分D.13分
2.如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是( )
A.B.C.D.
3.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )
A.12πcm2B.15πcm2C.18πcm2D.24πcm2
4.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:
(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求
(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A.两人皆正确B.两人皆错误
C.甲正确,乙错误D.甲错误,乙正确
5.下图中①表示的是组合在一起的模块,在②③④⑤四个图形中,是这个模块的俯视图的是( )
A.②B.③C.④D.⑤
6.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于( )
A.B.C.D.
7.圆内接正三角形、正方形、正六边形的边长之比为( )
A.1:2:3B.1::C.::1D.无法确定
8.下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0B.x2=xC.x2+3=2xD.(x﹣1)2+1=0
9.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球( )
A.12个B.16个C.20个D.25个
10.如图,四边形ABCD是⊙O的内接四边形,点E在边CD的延长线上,若∠ABC=110°,则∠ADE的度数为( )
A.55°B.70°C.90°D.110°
11.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为( )
A.B.C.D.
12.如图,在菱形中,,,为中点,是上一点,为上一点,且,,交于点,关于下列结论,正确序号的选项是( )
①,②,③④
A.①②B.①②③C.①②④D.①③④
二、填空题(每题4分,共24分)
13.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.
14.如图,已知正方形OABC的三个顶点坐标分别为A (2,0),B (2,2),C (0,2),若反比例函数的图象与正方形OABC的边有交点,请写出一个符合条件的k值__________.
15.若、为关于x的方程(m≠0)的两个实数根,则的值为________.
16.如图,在△ABC中,∠ACB=90°,AC=6,AB=1.现分别以点A、点B为圆心,以大于AB相同的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若将△BDE沿直线MN翻折得△B′DE,使△B′DE与△ABC落在同一平面内,连接B′E、B′C,则△B′CE的周长为_____.
17.如图,扇形的圆心角是为,四边形是边长为的正方形,点分别在在弧上,那么图中阴影部分的面积为__________.(结果保留)
18.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 .
三、解答题(共78分)
19.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.
(1)求证:DE是⊙O的切线;
(2)若BD=3,AD=4,则DE= .
20.(8分)在等边中,点为上一点,连接,直线与分别相交于点,且.
(1)如图(1),写出图中所有与相似的三角形,并选择其中的一对给予证明;
(2)若直线向右平移到图(2)、图(3)的位置时,其他条件不变,(1)中的结论是否仍然成立?若成立请写出来(不证明),若不成立,请说明理由;
(3)探究:如图(1),当满足什么条件时(其他条件不变),?请写出探究结果,并说明理由(说明:结论中不得含有未标识的字母).
21.(8分)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.
22.(10分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.
(1)证明:DE//AB;
(2)若CD=3,求四边形BEDF的周长.
23.(10分)解方程:
(1)2x2﹣7x+3=0
(2)7x(5x+2)=6(5x+2)
24.(10分)如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.
(1)求证:BD=CD.
(2)若弧DE=50°,求∠C的度数.
(3)过点D作DF⊥AB于点F,若BC=8,AF=3BF,求弧BD的长.
25.(12分)已知抛物线y=ax2+2x﹣(a≠0)与y轴交于点A,与x轴的一个交点为B.
(1)①请直接写出点A的坐标 ;
②当抛物线的对称轴为直线x=﹣4时,请直接写出a= ;
(2)若点B为(3,0),当m2+2m+3≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,求m的值;
(3)已知点C(﹣5,﹣3)和点D(5,1),若抛物线与线段CD有两个不同的交点,求a的取值范围.
26.(12分)如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.
(1)求证:AC为⊙O切线.
(2)若AB=5,DF=4,求⊙O半径长.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、B
4、A
5、A
6、C
7、C
8、B
9、B
10、D
11、C
12、B
二、填空题(每题4分,共24分)
13、
14、1(满足条件的k值的范围是0<k≤4)
15、-2
16、3
17、
18、1
三、解答题(共78分)
19、(1)见解析;(2)
20、(1) △BPF∽△EBF,△BPF∽△BCD;(2)均成立,分别为△BPF∽△EBF,△BPF∽△BCD,(3)当BD平分∠ABC时,PF=PE.
21、证明见解析.
22、(1)见详解;(2)12
23、(1);(2)
24、(1)详见解析;(2)65°;(3).
25、(1)①;②;(2);(1)a>或a<﹣1.
26、(1)见解析;(2)
x(分)
…
13.5
14.7
16.0
…
y(米)
…
156.25
159.85
158.33
…
广东省深圳市石厦学校2023-2024学年九上数学期末监测模拟试题含答案: 这是一份广东省深圳市石厦学校2023-2024学年九上数学期末监测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,方程2x等内容,欢迎下载使用。
云南省昆明市祯祥初级中学2023-2024学年数学九上期末监测试题含答案: 这是一份云南省昆明市祯祥初级中学2023-2024学年数学九上期末监测试题含答案,共6页。试卷主要包含了下列事件是随机事件的是等内容,欢迎下载使用。
云南省昆明市西山区2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份云南省昆明市西山区2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了正六边形的边心距与半径之比为等内容,欢迎下载使用。