六盘水市重点中学2023-2024学年九上数学期末教学质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图, 在同一坐标系中(水平方向是x轴),函数和的图象大致是( )
A.B.C.D.
2.若反比例函数的图象经过点,则这个函数的图象一定还经过点( )
A.B.C.D.
3.如图,点C、D在圆O上,AB是直径,∠BOC=110°,AD∥OC,则∠AOD=( )
A.70°B.60°C.50°D.40°
4.若反比例函数y=(k≠0)的图象经过点(﹣4,),则下列点在该图象上的是( )
A.(﹣5,2)B.(3,﹣6)C.(2,9)D.(9,2)
5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是( )
A.①②B.①③④C.①②③⑤D.①②③④⑤
6.如图,AB为⊙O的直径,CD为⊙O上的两个点(CD两点分别在直径AB的两侧),连接BD,AD,AC,CD,若∠BAD=56°,则∠C的度数为()
A.56°B.55°
C.35°D.34°
7.二次函数y=3(x+4)2﹣5的图象的顶点坐标为( )
A.(4,5)B.(﹣4,5)C.(4,﹣5)D.(﹣4,﹣5)
8.如图,若绕点按逆时针方向旋转后能与重合,则( ).
A.B.C.D.
9.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )
A.B.C.D.
10.如图,▱ABCD的对角线AC,BD相交于点O,且AC=10,BD=12,CD=m,那么m的取值范围是( )
A.10
A.B.
C.D.
12.如图,的顶点在第一象限,顶点在轴上,反比例函数的图象经过点,若,的面积为,则的值为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.平面内有四个点A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,则满足题意的OC长度为整数的值可以是_______.
14.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球_____个.
15.如图,直线∥轴,分别交反比例函数和图象于、两点,若S△AOB=2,则的值为_______.
16.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:其中正确结论有_____.
①abc>0;②16a+4b+c<0;③4ac﹣b2<8a;④<a;⑤b<c.
17.如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=______.
18.若点P(3,1)与点Q关于原点对称,则点Q的坐标是___________.
三、解答题(共78分)
19.(8分)如图①,四边形是边长为2的正方形,,四边形是边长为的正方形,点分别在边上,此时,成立.
(1)当正方形绕点逆时针旋转,如图②,成立吗?若成立,请证明;若不成立,请说明理由;
(2)当正方形绕点逆时针旋转(任意角)时,仍成立吗?直接回答;
(3)连接,当正方形绕点逆时针旋转时,是否存在∥,若存在,请求出的值;若不存在,请说明理由.
20.(8分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.
21.(8分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.
(1)小明选择补给站C(球王故里)的概率是多少?
(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.
22.(10分)如图,已知,在直角坐标系中,直线与轴、轴分别交于点,点从A点开始以1个单位/秒的速度沿轴向右移动,点从点开始以2个单位/秒的速度沿轴向上移动,如果两点同时出发,经过几秒钟,能使的面积为8个平方单位.
23.(10分)在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a+bx+c(a<0)经过点A,B,
(1)求a、b满足的关系式及c的值,
(2)当x<0时,若y=a+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,
(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,
24.(10分)已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F
(1)如图1,求证:BD平分∠ADF;
(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;
(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=1.求sin∠ADB的值.
25.(12分)已知关于的方程
(1)当m取何值时,方程有两个实数根;
(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.
26.(12分)如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形.
(1)如果,,
①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为 ,线段的数量关系为 ;
②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果,是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、D
4、B
5、C
6、D
7、D
8、D
9、C
10、D
11、A
12、B
二、填空题(每题4分,共24分)
13、1,3,3
14、1
15、1
16、①③④.
17、50°
18、 (–3,–1)
三、解答题(共78分)
19、(1)成立,证明见解析;(2)结论仍成立;(3)存在,
20、详见解析.
21、(1 );(2)
22、2秒,4秒或秒
23、(1)b=3a+1;c=3;(2);(3)点P的坐标为:(,)或(,)或(,)或(,).
24、(1)证明见解析;(2)证明见解析;(3)sin∠ADB的值为.
25、(1)m≥—;(2)x1=0,x2=2.
26、(1)①垂直,相等;②见解析;(2)见解析.
肇庆市重点中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份肇庆市重点中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,已知,则,已知等内容,欢迎下载使用。
山东省重点中学2023-2024学年九上数学期末教学质量检测试题含答案: 这是一份山东省重点中学2023-2024学年九上数学期末教学质量检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列结论正确的是等内容,欢迎下载使用。
哈尔滨市重点中学2023-2024学年九上数学期末教学质量检测试题含答案: 这是一份哈尔滨市重点中学2023-2024学年九上数学期末教学质量检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。