内蒙古伊金霍洛旗2023-2024学年数学九上期末教学质量检测模拟试题含答案
展开
这是一份内蒙古伊金霍洛旗2023-2024学年数学九上期末教学质量检测模拟试题含答案,共8页。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.在下列函数图象上任取不同两点P(x1,y1),Q(x2,y2),一定能使(x2﹣x1)(y2﹣y1)>0成立的是( )
A.y=﹣2x+1(x<0)B.y=﹣x2﹣2x+8(x<0)
C.y=(x>0)D.y=2x2+x﹣6(x>0)
2.已知两个相似三角形的面积比为 4:9,则周长的比为 ( )
A.2:3B.4:9
C.3:2D.
3.一元二次方程x2﹣2x﹣1=0的根是( )
A.x1=1,x2=2B.x1=﹣1,x2=﹣2
C.x1=1+,x2=1﹣D.x1=1+,x2=1﹣
4.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数( )
A.1个B.2个C.3个D.4个
5.下列方程中,为一元二次方程的是( )
A.x=2B.x+y=3C.D.
6.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( )
A.15°B.30°C.60°D.75°
7.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是( ).
A.18米 B.16米 C.20米 D.15米
8.如图所示的几何体是由4个大小相同的小立方块搭成,它的俯视图是( )
A.B.C.D.
9.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5,6,9,另一个三角形的最长边长为4.5,则它的最短边长是( )
A.B.C.D.
10.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为( )
A.B.C.D.
11.如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是( )
A.0.620B.0.618C.0.610D.1000
12.如果△ABC∽△DEF,且对应边的AB与DE的长分别为2、3,则△ABC与△DEF的面积之比为( )
A.4:9B.2:3C.3:2D.9:4
二、填空题(每题4分,共24分)
13.已知正方形ABCD的边长为,分别以B、D为圆心,以正方形的边长为半径在正方形内画弧,得到如图所示的阴影部分,若随机向正方形ABCD内投掷一颗石子,则石子落在阴影部分的概率为_____.(结果保留π)
14.计算:__________.
15.某人沿着有一定坡度的坡面前进了6米,此时他在垂直方向的距离上升了2米,则这个坡面的坡度为_____.
16.在中,,,,将沿轴依次以点、、为旋转中心顺时针旋转,分别得到图?、图②、…,则旋转得到的图2018的直角顶点的坐标为________.
17.如图,在平行四边形中,是边上的点,,连接,相交于点,则_________.
18.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.
三、解答题(共78分)
19.(8分)如图,已知AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,且∠BAD=80°,求∠DAC的度数.
20.(8分)如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.
(1)求抛物线C2的解析式;
(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;
(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.
21.(8分)如图,正方形的边长为,,,,分别是,,,上的动点,且.
(1)求证:四边形是正方形;
(2)求四边形面积的最小值.
22.(10分)如图,已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点.
(1)求点A和B的坐标;
(2)连结OA,OB,求△OAB的面积.
23.(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地大约要走多少千米?
(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)
24.(10分)感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)
探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.
拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,BD=4,则DE的长为 .
25.(12分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.
(1)求证:△BAE≌△BCF;
(2)若∠ABC=50°,则当∠EBA= °时,四边形BFDE是正方形.
26.(12分)为测量某特种车辆的性能,研究制定了行驶指数,而的大小与平均速度和行驶路程有关(不考虑其他因素),由两部分的和组成,一部分与成正比,另一部分与成正比.在实验中得到了表格中的数据:
(1)用含和的式子表示;
(2)当行驶指数为,而行驶路程为时,求平均速度的值;
(3)当行驶路程为时,若行驶指数值最大,求平均速度的值.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、C
4、C
5、C
6、D
7、A
8、C
9、B
10、C
11、B
12、A
二、填空题(每题4分,共24分)
13、
14、
15、
16、 (8072,0)
17、
18、(3,0).
三、解答题(共78分)
19、40°
20、(1)y=﹣x2+4x;(2)P(2,2);(3)S△MOC最大值为.
21、(1)详见解析;(2)四边形面积的最小值为1.
22、(1)A(1,1) ,B(-3,9);(2)6.
23、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米
24、探究:见解析;拓展:.
25、(1)证明见试题解析;(2)1.
26、(1);(2)50 km/h;(3)90 km/h.
x
…
﹣1
0
1
2
…
y
…
0
3
4
3
…
速度
路程
指数
相关试卷
这是一份内蒙古呼伦贝尔市名校2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数,如图,,,以下结论成立的是,反比例函数,下列说法不正确的是等内容,欢迎下载使用。
这是一份内蒙古伊金霍洛旗2023-2024学年数学九年级第一学期期末检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,△OAB∽△OCD,OA等内容,欢迎下载使用。
这是一份2023-2024学年内蒙古乌海市名校九上数学期末检测模拟试题含答案,共8页。试卷主要包含了下列命题中正确的是,中,,,,的值为,如图,点P等内容,欢迎下载使用。