


兴安市重点中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案
展开
这是一份兴安市重点中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了同桌读了等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,在Rt△ABC中,∠ACB=90°,AC=,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是( )
A.B.C.D.
2.二次函数图象的顶点坐标是( )
A.B.C.D.
3.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则△PQD的面积为( )
A.B.C.D.
4.如图所示,河堤横断面迎水坡AB的坡比是1:3,坡高BC=20,则坡面AB的长度( )
A.60B.100C.50D.20
5.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
A.B.C.D.1
6.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )
A.πB.C.D.
7.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学计数法将7.5忽米记为米,则正确的记法为( )
A.7.5×米B.0.75×米C.0.75×米D.7.5×米
8.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,m)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2B.x<﹣3或x>2
C.﹣3<x<0或x>2D.0<x<2
9.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )
A.m<1B.m>﹣1C.m>1D.m<﹣1
10.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由左图中所示的图案平移后得到的图案是( )
A.B.C.D.
11.下列方程中是关于的一元二次方程的是 ( )
A.B.C.D.
12.已知二次函数的图象如图所示,下列3个结论:
①;②b<a+c;③,其中正确的是( )
A.①②B.①③C.②③D.①②③
二、填空题(每题4分,共24分)
13.某果园2014年水果产量为100吨,2016年水果产量为144吨,则该果园水果产量的年平均增长率为_______________.
14.如图,是的直径,弦与弦长度相同,已知,则________.
15.二次函数的最大值是________.
16.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有_____个.
17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).
18.已知x=2是关于x的方程x2- 3x+k= 0的一个根,则常数k的值是___________.
三、解答题(共78分)
19.(8分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.
(1)求证:平行四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
20.(8分)如图,以40m/s的速度将小球沿与地面30°角的方向击出时,小球的飞行路线是一段抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系式为h=20t-(t≥0). 回答问题:
(1)小球的飞行高度能否达到19.5m;
(2) 小球从最高点到落地需要多少时间?
21.(8分)如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t>0).
(1)tan∠DBE= ;
(2)求点F落在CD上时t的值;
(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;
(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.
22.(10分)关于的一元二次方程 有两个不等实根,.
(1)求实数的取值范围;
(2)若方程两实根,满足,求的值。
23.(10分)已知:如图,B,C,D三点在 上,,PA是钝角△ABC的高线,PA的延长线与线段CD交于点E.
(1)请在图中找出一个与∠CAP相等的角,这个角是 ;
(2)用等式表示线段AC,EC,ED之间的数量关系,并证明.
24.(10分)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G
(1)求证:△BDG∽△DEG;
(2)若EG•BG=4,求BE的长.
25.(12分)如图1,抛物线与x轴交于A、B两点(点A在x轴的负半轴),与y轴交于点C. 抛物线的对称轴交抛物线于点D,交x轴于点E,点P是线段DE上一动点(点P不与DE两端点重合),连接PC、PO.
(1) 求抛物线的解析式和对称轴;
(1) 求∠DAO的度数和△PCO的面积;
(3) 在图1中,连接PA,点Q 是PA 的中点.过点P作PF⊥AD于点F,连接QE、QF、EF得到图1.试探究: 是否存在点P,使得 ,若存在,请求点P的坐标;若不存在,请说明理由.
26.(12分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.
(1)画树状图或列表求出各人获胜的概率。
(2)这个游戏公平吗?说说你的理由
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、D
4、D
5、B
6、B
7、D
8、C
9、C
10、B
11、C
12、A
二、填空题(每题4分,共24分)
13、10%.
14、
15、1
16、1
17、0.1
18、2
三、解答题(共78分)
19、(1)详见解析;(2)tan∠ADP=.
20、(1)19.5m;(2)2s
21、(1);(1)t=;(3)见解析;(4)t的值为或或或1.
22、(1);(2).
23、(1) ∠BAP;(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2. 证明见解析.
24、(1)证明见解析(2)1
25、(1);;(1)45°;;(3)存在,
26、(1)小力获胜的概率为,小明获胜的概率;(2)不公平,理由见解析
种子粒数
100
400
800
1000
2000
5000
发芽种子粒数
85
298
652
793
1604
4005
发芽频率
0.850
0.745
0.815
0.793
0.802
0.801
相关试卷
这是一份蚌埠市重点中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各点在抛物线上的是等内容,欢迎下载使用。
这是一份钦州市重点中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了如图,在中,,则AC的长为等内容,欢迎下载使用。
这是一份湛江市重点中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列事件中,属于不确定事件的有等内容,欢迎下载使用。
