北京市楼梓庄中学2023-2024学年九年级数学第一学期期末经典试题含答案
展开
这是一份北京市楼梓庄中学2023-2024学年九年级数学第一学期期末经典试题含答案,共9页。试卷主要包含了如图,中,,下列命题是真命题的个数是,方程的解是,如图,,,以下结论成立的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是( )
A.(2,-6)B.(-2,6)C.(-6,2)D.(-6,2)
2.如图,在中,,,平分,是的中点,若,则的长为( )
A.4B.C.D.
3.某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道.学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是( )
A.B.C.D.
4.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为( )
A.﹣2B.﹣1C.1D.2
5.如图,中,.将绕点顺时针旋转得到,边与边交于点(不在上),则的度数为( )
A.B.C.D.
6.掷一枚质地均匀的硬币10次,下列说法正确的是( )
A.每2次必有一次正面朝上B.必有5次正面朝上
C.可能有7次正面朝上D.不可能有10次正面朝上
7.下列命题是真命题的个数是( ).
①64的平方根是;
②,则;
③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;
④三角形三边的垂直平分线交于一点.
A.1个B.2个C.3个D.4个
8.如图,在矩形中,,的平分线交边于点,于点,连接并延长交边于点,连接交于点,给出下列命题:
(1)(2)(3)(4)
其中正确命题的个数是( )
A.B.C.D.
9.方程的解是( )
A.B.C.或D.或
10.如图,,,以下结论成立的是( )
A.B.
C.D.以上结论都不对
11.如图,在平面直角坐标系中,以为圆心作⊙,⊙与轴交于、,与轴交于点,为⊙上不同于、的任意一点,连接、,过点分别作于,于.设点的横坐标为,.当点在⊙上顺时针从点运动到点的过程中,下列图象中能表示与的函数关系的部分图象是( )
A.B.C.D.
12.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是( )
A.7000(1+x2)=23170B.7000+7000(1+x)+7000(1+x)2=23170
C.7000(1+x)2=23170D.7000+7000(1+x)+7000(1+x)2=2317
二、填空题(每题4分,共24分)
13.半径为的圆中,弦、的长分别为2和,则的度数为_____.
14.如图,在等腰直角三角形中,,点在轴上,点的坐标为(0,3),若点恰好在反比例函数第一象限的图象上,过点作轴于点,那么点的坐标为__________.
15.已知⊙O的半径为,圆心O到直线L的距离为,则直线L与⊙O的位置关系是___________.
16.如图,直线a // b // c,点B是线段AC的中点,若DE=2,则DF的长度为_________.
17.如图,扇形ABC的圆心角为90°,半径为6,将扇形ABC绕A点逆时针旋转得到扇形ADE,点B、C的对应点分别为点D、E,若点D刚好落在上,则阴影部分的面积为_____.
18.计算sin45°的值等于__________
三、解答题(共78分)
19.(8分)如图,在中,, 点是边上一点,连接,以为边作等边.
如图1,若求等边的边长;
如图2,点在边上移动过程中,连接,取的中点,连接,过点作于点.
①求证:;
②如图3,将沿翻折得,连接,直接写出的最小值.
20.(8分)为做好全国文明城市的创建工作,我市交警连续天对某路口个“岁以下行人”和个“岁及以上行人”中出现交通违章的情况进行了调查统计,将所得数据绘制成如下统计图.请根据所给信息,解答下列问题.
(1)求这天“岁及以上行人”中每天违章人数的众数.
(2)某天中午下班时段经过这一路口的“岁以下行人”为人,请估计大约有多少人会出现交通违章行为.
(3)请根据以上交通违章行为的调查统计,就文明城市创建减少交通违章提出合理建议.
21.(8分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.
(1)画树状图或列表求出各人获胜的概率。
(2)这个游戏公平吗?说说你的理由
22.(10分)先化简,再求值的值,其中.
23.(10分)如图,在中,,平分交于点,将绕点顺时针旋转到的位置,点在上.
(1)旋转的度数为______;
(2)连结,判断与的位置关系,并说明理由.
24.(10分)已知二次函数的图像是经过、两点的一条抛物线.
(1)求这个函数的表达式,并在方格纸中画出它的大致图像;
(2)点为抛物线上一点,若的面积为,求出此时点的坐标.
25.(12分)某班“数学兴趣小组”对函数的图像和性质进行了探究,探究过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:
其中,________________.
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分;
(3)观察函数图像,写出两条函数的性质;
(4)进一步探究函数图像发现:
①方程有______个实数根;
②函数图像与直线有_______个交点,所以对应方程有_____个实数根;
③关于的方程有个实数根,的取值范围是___________.
26.(12分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.
小丽;如果以每千克10元的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以每千克13元的价格销售,那么每天可获取利润750元.
(1)已知该水果每天的销售量y(千克)与销售单价x(元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系,并求出这个函数关系式;
(2)设该超市销售这种水果每天获取的利润为W(元),求W(元)与x(元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、B
4、A
5、D
6、C
7、C
8、D
9、C
10、C
11、A
12、C
二、填空题(每题4分,共24分)
13、或
14、(5,2)
15、相交
16、1
17、3π+9.
18、
三、解答题(共78分)
19、(1);(2)证明见解析;(3)最小值为
20、(1);(2)人;(3)应加大对老年人的交通安全教育(答案不唯一)
21、(1)小力获胜的概率为,小明获胜的概率;(2)不公平,理由见解析
22、;
23、(1)90;(2)DE∥BC,见解析
24、(1),图画见解析;(2)或.
25、(1)-1;(2)见解析;(1)函数的图象关于y轴对称;当x>1时,y随x的增大而增大;(4)①2;②1,1;③-4<a<-1
26、(1)y=﹣50x+800(x>0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.
相关试卷
这是一份江苏省泰州市高港区许庄中学2023-2024学年九年级数学第一学期期末经典试题含答案,共7页。试卷主要包含了下列运算中,正确的是,函数y=与y=-kx2+k等内容,欢迎下载使用。
这是一份2023-2024学年北京市月坛中学九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了已知函数的图象与x轴有交点,若点在反比例函数上,则的值是等内容,欢迎下载使用。
这是一份2023-2024学年北京市楼梓庄中学数学八年级第一学期期末质量检测试题含答案,共7页。试卷主要包含了下列计算中正确的是,下列图案中,是轴对称图形的是,下列各式中是分式的是,已知P1,下列式子,,,,不是分式的有等内容,欢迎下载使用。