四川省成都市泡桐树中学2023-2024学年数学九上期末统考试题含答案
展开
这是一份四川省成都市泡桐树中学2023-2024学年数学九上期末统考试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件是必然事件的是,下列各式与是同类二次根式的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.点P(6,-8)关于原点的对称点的坐标为( )
A.(-6,8)B.(–6,-8)C.(8,-6)D.(–8,-6)
2.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的周长之比为1:2,点C的坐标为(﹣2,0),若点B的坐标为(﹣5,1),则点D的坐标为( )
A.(4,﹣2)B.(6,﹣2)C.(8,﹣2)D.(10,﹣2)
3.如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上.若,则CD的长为( )
A.1B.C.D.2
4.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为( )
A.B.C.D.
5.如图,AB切⊙O于点B,C为⊙O上一点,且OC⊥OA,CB与OA交于点D,若∠OCB=15°,AB=2,则⊙O的半径为( )
A.B.2C.3D.4
6.下列事件是必然事件的是( )
A.半径为2的圆的周长是2B.三角形的外角和等于360°
C.男生的身高一定比女生高D.同旁内角互补
7.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为( )
A.5sin25°B.5tan65°C.5cs25°D.5tan25°
8.已知二次函数和一次函数的图象如图所示,下面四个推断:
①二次函数有最大值
②二次函数的图象关于直线对称
③当时,二次函数的值大于0
④过动点且垂直于x轴的直线与的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是或,其中正确的有( )
A.1个B.2个C.3个D.4个
9.下列各式与是同类二次根式的是( )
A.B.C.D.
10.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为( )
A.4B.4C.6D.8
11.如图, 在同一坐标系中(水平方向是x轴),函数和的图象大致是( )
A.B.C.D.
12.如图,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O为圆心,AO为半径作半圆,以A为圆心,AB为半径作弧BD,则图中阴影部分的面积为( )
A.3πB.π+1C.πD.2
二、填空题(每题4分,共24分)
13.如图是一个三角形点阵,从上向下数有无数多行,其中第一行有2个点,第二行有4个点……第n行有2n个点……,若前n行的点数和为930,则n是________.
14.如图,矩形ABCD的顶点A、B在x轴的正半轴上,反比例函数y=(k≠0)在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值_____.
15.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为_____.
16.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .
17.已知两个相似三角形的周长比是,它们的面积比是________.
18.将抛物线向右平移2个单位长度,则所得抛物线对应的函数表达式为______.
三、解答题(共78分)
19.(8分)某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:
(1)求样本中平均每条鱼的质量;
(2)估计鱼塘中该种鱼的总质量;
(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.
20.(8分)有四组家庭参加亲子活动,A、B、C、D分别代表四个家长,他们的孩子分别是a、b、c、d,若主持人随机从家长、孩子中各选择一个,请你用树状图或列表的方法求出选中的两人刚好是同一个家庭的概率.
21.(8分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.
求这条抛物线的表达式及其顶点坐标;
当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;
当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?
22.(10分)如图,在平面直角系中,点A在x轴正半轴上,点B在y轴正半轴上,∠ABO=30°,AB=2,以AB为边在第一象限内作等边△ABC,反比例函数的图象恰好经过边BC的中点D,边AC与反比例函数的图象交于点E.
(1)求反比例函数的解析式;
(2)求点E的横坐标.
23.(10分)如图,在中,,平分交于点,将绕点顺时针旋转到的位置,点在上.
(1)旋转的度数为______;
(2)连结,判断与的位置关系,并说明理由.
24.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.
(1)求证:∠A=∠DOB;
(2)DE与⊙O有怎样的位置关系?请说明理由.
25.(12分)(1)解方程:
(2)如图,正六边形的边长为2,以点为圆心,长为半径画弧,求弧的长.
26.(12分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、D
4、C
5、B
6、B
7、C
8、B
9、A
10、B
11、A
12、C
二、填空题(每题4分,共24分)
13、1
14、1
15、1:1.
16、1.
17、
18、
三、解答题(共78分)
19、(1)1.78kg;(2)1kg;(3)y=14x,0≤x≤1.
20、概率为.
21、(1)抛物线的表达式为,抛物线的顶点坐标为;(2)P点坐标为;(3)当时,S有最大值,最大值为1.
22、(1);(2).
23、(1)90;(2)DE∥BC,见解析
24、(1)见解析;(2)相切,理由见解析
25、(1),;(2)
26、
数量/条
平均每条鱼的质量/kg
第1次捕捞
20
1.6
第2次捕捞
15
2.0
第3次捕捞
15
1.8
相关试卷
这是一份四川省成都市外国语学校2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列两个图形,一定相似的是等内容,欢迎下载使用。
这是一份四川省成都市青白江区2023-2024学年九上数学期末统考试题含答案,共9页。
这是一份四川省成都市泡桐树中学2023-2024学年八年级上学期数学期末试卷,共3页。