四川省成都市武侯区西蜀实验学校2023-2024学年九上数学期末检测模拟试题含答案
展开
这是一份四川省成都市武侯区西蜀实验学校2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中正确的是,下列说法错误的是,若,,则的值为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.已知关于x的一元二次方程x2-(2k+1)x+k+1=0, 若x1+x2=3,则k的值是( )
A.0B.1C.﹣1D.2
2.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是( )
A.﹣3B.﹣1C.2D.3
3.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是( )
A.B.C.D.
4.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000
B.200+200×2x=1000
C.200+200×3x=1000
D.200[1+(1+x)+(1+x)2]=1000
5.下列说法中正确的是( )
A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦
6.下列说法错误的是
A.必然事件发生的概率为B.不可能事件发生的概率为
C.有机事件发生的概率大于等于、小于等于D.概率很小的事件不可能发生
7.已知关于的一元二次方程有一个根为,则的值为( )
A.0B.1C.D.
8.若,,则的值为( )
A.B.C.D.
9.常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率.若设人均收入的年增长率为x,根据题意列方程为( )
A.B.
C.D.
10.如图,二次函数()图象的顶点为,其图象与轴的交点,的横坐标分别为和1.下列结论:
①;②;③;④当时,是等腰直角三角形.其中结论正确的个数是( )
A.4个B.1个C.2个D.1个
11.在数轴上表示不等式﹣2≤x<4,正确的是( )
A.B.
C.D.
12.下列四个图形是中心对称图形( ).
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将△ABC绕点O逆时针旋转,每秒旋转60°,则第2018秒时,点A的坐标为 .
14.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,在一定范围内,每增加1棵,所出售的这批树苗每棵售价降低0.5元,若该校最终向园林公司支付树苗款8800元,设该校共购买了棵树苗,则可列出方程__________.
15.若某人沿坡度i=3∶4的斜坡前进10m,则他比原来的位置升高了_________m.
16.如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.
17.已知是关于的方程的一个根,则______.
18.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.
三、解答题(共78分)
19.(8分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).
(1)小红摸出标有数3的小球的概率是 .
(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.
(3)求点P(x,y)在函数y=﹣x+5图象上的概率.
20.(8分)如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.
(1)求抛物线的解析式.
(2)点是轴正半轴上的一个动点,过点作轴,交直线于点,交抛物线于点.
①若点在线段上(不与点,重合),连接,求面积的最大值.
②设的长为,是否存在,使以点,,,为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.
21.(8分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆小时)指单位时间内通过道路指定断面的车辆数;速度(千米小时)指通过道路指定断面的车辆速度,密度(辆千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量与速度之间关系的部分数据如下表:
(1)根据上表信息,下列三个函数关系式中,刻画,关系最准确是_____________________.(只填上正确答案的序号)
①;②;③
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知,,满足,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当时道路出现轻度拥堵.试分析当车流密度在什么范围时,该路段将出现轻度拥堵?
22.(10分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.
(1)求证:四边形AECF是矩形;
(2)连接OE,若AE=4,AD=5,求OE的长.
23.(10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.
(1)降价前商场每月销售该商品的利润是多少元?
(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
24.(10分)如图1,抛物线的顶点为点,与轴的负半轴交于点,直线交抛物线W于另一点,点的坐标为.
(1)求直线的解析式;
(2)过点作轴,交轴于点,若平分,求抛物线W的解析式;
(3)若,将抛物线W向下平移个单位得到抛物线,如图2,记抛物线的顶点为,与轴负半轴的交点为,与射线的交点为.问:在平移的过程中,是否恒为定值?若是,请求出的值;若不是,请说明理由.
25.(12分)伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6
(1)当每吨销售价为多少万元时,销售利润为0.96万元?
(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?
26.(12分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.
(1)求∠D的度数;
(2)若CD=2,求BD的长.
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、B
4、D
5、D
6、D
7、B
8、D
9、D
10、C
11、A
12、C
二、填空题(每题4分,共24分)
13、
14、
15、1.
16、1
17、9
18、1
三、解答题(共78分)
19、(1);(2)共12种情况;(3)
20、(1);(2)①;②存在,当时,以点,,,为顶点的四边形是平行四边形.
21、(1)答案为③;(2)v=30时,q达到最大值,q的最大值为1;(3)84<k≤2
22、(1)见解析;(2)OE=.
23、 (1) 4800元;(2) 降价60元.
24、(1);(2);(3)恒为定值.
25、(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.
26、(1)45°;(2).
速度v(千米/小时)
流量q(辆/小时)
相关试卷
这是一份四川省成都市武侯区西蜀实验学校2023-2024学年九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=3,抛物线的对称轴是直线,方程2x等内容,欢迎下载使用。
这是一份2023-2024学年四川成都市武侯区西蜀实验学校数学九上期末教学质量检测试题含答案,共8页。
这是一份2023-2024学年四川成都市武侯区西蜀实验学校九年级数学第一学期期末达标检测试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。