宁夏银川市第二中学2023-2024学年数学九年级第一学期期末达标测试试题含答案
展开
这是一份宁夏银川市第二中学2023-2024学年数学九年级第一学期期末达标测试试题含答案,共7页。试卷主要包含了在中,,,,那么的值等于等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学计数法将7.5忽米记为米,则正确的记法为( )
A.7.5×米B.0.75×米C.0.75×米D.7.5×米
2.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).
A.B.C.D.
3.二次函数y=+2的顶点是( )
A.(1,2)B.(1,−2)C.(−1,2)D.(−1,−2)
4.下列图形中,既是中心对称图形又是轴对称图形的有几个( )
A.4个B.3个C.2个D.1个
5.在中,,,,那么的值等于( )
A.B.C.D.
6.如图,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,且AD=2,AB=3,AE=4,则AC等于( )
A.5B.6C.7D.8
7.已知二次函数图象如图所示,对称轴为过点且平行于轴的直线,则下列结论中正确的是( )
A.B.C.D.
8.如图,BD是⊙O的直径,圆周角∠A = 30,则∠CBD的度数是( )
A.30B.45C.60D.80
9.反比例函数的图象位于平面直角坐标系的( )
A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限
10.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是( )
A.B.C.D.
11.向上发射一枚炮弹,经秒后的高度为,且时间与高度的关系式为,若此时炮弹在第秒与第秒时的高度相等,则在下列哪一个时间的高度是最高的( )
A.第秒B.第秒C.第秒D.第秒
12.已知反比例函数 y=的图象如图所示,则二次函数 y =ax 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.若,则的值是______.
14.在比例尺为1:3000000的地图上,测得AB两地间的图上距离为5厘米,则AB两地间的实际距离是______千米.
15.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为___.
16.已知x=1是关于x的一元二次方程2x2﹣x+a=0的一个根,则a的值是_____.
17.如图,在矩形中,,以点为圆心,以的长为半径画弧交于,点恰好是中点,则图中阴影部分的面积为___________.(结果保留)
18.在△ABC中,∠B=45°,csA=,则∠C的度数是_____.
三、解答题(共78分)
19.(8分)如图,点A、B、C在⊙O上,用无刻度的直尺画图.
(1)在图①中,画一个与∠B互补的圆周角;
(2)在图②中,画一个与∠B互余的圆周角.
20.(8分)已知二次函数的图象经过点.
(1)当时,若点在该二次函数的图象上,求该二次函数的表达式;
(2)已知点,在该二次函数的图象上,求的取值范围;
(3)当时,若该二次函数的图象与直线交于点,,且,求的值.
21.(8分)如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).
(1)求一次函数与反比例函数的解析式;
(2)请直接写出满足kx+b>的x的取值范围;
(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.
22.(10分)在平面直角坐标系中,抛物线经过点,.
(1)求这条抛物线所对应的函数表达式.
(2)求随的增大而减小时的取值范围.
23.(10分)如图,在四边形中,,与交于点,点是的中点,延长到点,使,连接,
(1)求证:四边形是平行四边形;
(2)若,,,求四边形的面积.
24.(10分)某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价(元/千克)与采购量(千克)之间的函数关系图象如图中折线所示(不包括端点).
(1)当时,写出与之间的函数关系式;
(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?
25.(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.
(1)求与之间的函数关系式,并写出自变量的取值范围;
(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
26.(12分)如图,在中,,的平分线交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交,于点,
(1)试判断直线与的位置关系,并说明理由.
(2)若,,求阴影部分的面积(结果保留)
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、C
4、D
5、A
6、B
7、D
8、C
9、A
10、D
11、B
12、C
二、填空题(每题4分,共24分)
13、
14、150
15、2020.
16、﹣1.
17、
18、75°
三、解答题(共78分)
19、(1)见解析;(2)见解析
20、(1);(2);(3)或2.
21、(1)y=﹣,y=﹣x+1;(2)x<﹣3或0<x<6;(3)点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,)
22、(1),(2)随的增大而减小时.
23、 (1)见详解;(2)四边形ABCF的面积S=6.
24、(1);(2)一次性采购量为800千克时,蔬菜种植基地能获得最大利润为12800元.
25、(1) (2),,144元
26、(1)与相切,见解析;(2)