四平市重点中学2023-2024学年数学九上期末教学质量检测模拟试题含答案
展开
这是一份四平市重点中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了计算的结果是,如图图形中,是中心对称图形的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.在一个不透明的袋子里装有5个红球和若干个白球,它们除颜色外其余完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计袋中的白球大约有( )个
A.10B.15C.20D.25
2.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A.4B.3C.2D.
3.计算的结果是( )
A.B.C.D.
4.如图图形中,是中心对称图形的是( )
A.B.C.D.
5.若 +10x+m=0是关于x的一元二次方程,则m的值应为( )
A.m="2"B.m=C.m=D.无法确定
6.如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:
①∠BAE=30°;
②射线FE是∠AFC的角平分线;
③CF=CD;
④AF=AB+CF.
其中正确结论的个数为( )
A.1 个B.2 个C.3 个D.4 个
7.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②点F是GE的中点;③;④,其中正确的结论个数是( )
A.4个B.3个C.2个D.1个
8.在Rt△ABC中,∠C = 90°,AC = 9,BC = 12,则其外接圆的半径为( )
A.15B.7.5C.6D.3
9.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.平行四边形B.等腰三角形C.矩形D.正方形
10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为( )
A.10mB.12mC.15mD.40m
11.下列方程是一元二次方程的是( )
A.2x﹣3y+1B.3x+y=zC.x2﹣5x=1D.x2﹣+2=0
12.设是方程的两个实数根,则的值为( )
A.2017B.2018C.2019D.2020
二、填空题(每题4分,共24分)
13.方程的两根为,,则= .
14.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.
15.如图,由边长为1的小正方形组成的网格中,点为格点(即小正方形的顶点),与相交于点,则的长为_________.
16.如图,有一张直径(BC)为1.2米的圆桌,其高度为0.8米,同时有一盏灯A距地面2米,圆桌的影子是DE,AD和AE是光线,建立图示的平面直角坐标系,其中点D的坐标是(2,0).那么点E的坐标是____.
17.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.
18.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是______.
三、解答题(共78分)
19.(8分)有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.
(1)如图1,BD平分∠ABC,AD∥BC,求证:四边形ABCD为“和睦四边形”;
(2)如图2,直线与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t的值;
(3)如图3,抛物线与轴交于A、B两点(点A在点B的左侧),与y轴交于点,抛物线的顶点为点D.当四边形COBD为“和睦四边形”,且CD=OC.抛物线还满足:①;②顶点D在以AB为直径的圆上. 点是抛物线上任意一点,且.若恒成立,求m的最小值.
20.(8分)如图,在△ABC中,D为AC上一点,E为CB延长线上一点,且,DG∥AB,求证:DF=BG.
21.(8分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.
(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.
22.(10分)解一元二次方程:x2﹣2x﹣3=1.
23.(10分)如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.
24.(10分)在一次社会大课堂的数学实践活动中,王老师要求同学们测量教室窗户边框上的点C到地面的距离即CD的长,小英测量的步骤及测量的数据如下:
(1)在地面上选定点A, B,使点A,B,D在同一条直线上,测量出、两点间的距离为9米;
(2)在教室窗户边框上的点C点处,分别测得点,的俯角∠ECA=35°,∠ECB=45°.请你根据以上数据计算出的长.
(可能用到的参考数据:sin35°≈0.57 cs35°≈0.82 tan35°≈0.70)
25.(12分)在直角三角形中,,点为上的一点,以点为圆心,为半径的圆弧与相切于点,交于点,连接.
(1)求证:平分;
(2)若,求圆弧的半径;
(3)在的情况下,若,求阴影部分的面积(结果保留和根号)
26.(12分)2019 年某市猪肉售价逐月上涨,每千克猪肉的售价(元)与月份(,且为整数)之间满足一次函数关系:,每千克猪肉的成本(元)与月份(,且为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为元,月份成本为元.
(1)求与之间的函数关系式;
(2)设销售每千克猪肉所获得的利润为 (元),求与之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、D
4、D
5、C
6、B
7、C
8、B
9、B
10、C
11、C
12、D
二、填空题(每题4分,共24分)
13、.
14、
15、
16、(4,0)
17、a≤且a≠1.
18、
三、解答题(共78分)
19、(1)见解析;(2)或;(3)
20、详见解析
21、(1),;(2)
22、x1=﹣1,x2=2.
23、(1)y=-(x-6)2+2.6;(2)球能过网;球会出界.
24、CD的长为21米
25、(1)证明见解析;(2)2;(3).
26、(1);(2)w=,月份利润最大,最大利润为
相关试卷
这是一份肇庆市重点中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,已知,则,已知等内容,欢迎下载使用。
这是一份潍坊市重点中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,方程x等内容,欢迎下载使用。
这是一份2023-2024学年湖南省重点中学九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。