安徽省安庆市望江县2023-2024学年数学九年级第一学期期末达标检测试题含答案
展开
这是一份安徽省安庆市望江县2023-2024学年数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了如图所示的工件的主视图是,如果,那么等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,在4×4的正方形方格中,和的顶点都在边长为1的小正方形的格点上,则的值为( )
A.B.C.D.3
2.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=( )
A.70°B.110°C.120°D.140°
3.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )
A.B.C.D.
4.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1B.C.-1D.+1
5.下列交通标志中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
6.如果关于x的一元二次方程有实数根,那么m的取值范围是( )
A.B.C.D.
7.如图所示的工件的主视图是( )
A.B.C.D.
8.通过对《一元二次方程》全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本思想是( )
A.转化B.整体思想C.降次D.消元
9.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )
A.B.1.5cmC.D.1cm
10.如果,那么( )
A.B. C.D.
11.如图,在中,.以为直径作半圆,交于点,交于点,若,则的度数是( )
A.B.C.D.
12.下列图形中,是轴对称图形,但不是中心对称图形的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.
14.如图,在置于平面直角坐标系中,点的坐标为,点的坐标为,点是内切圆的圆心.将沿轴的正方向作无滑动滚动,使它的三边依次与轴重合,第一次滚动后圆心为,第二次滚动后圆心为,…,依此规律,第2020次滚动后,内切圆的圆心的坐标是__________.
15.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
16.计算:﹣tan60°=_____.
17.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.
18.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .
三、解答题(共78分)
19.(8分)在平面直角坐标系中,将一块等腰直角三角板(△ABC)按如图所示放置,若AO=2,OC=1,∠ACB=90°.
(1)直接写出点B的坐标是 ;
(2)如果抛物线l:y=ax2﹣ax﹣2经过点B,试求抛物线l的解析式;
(3)把△ABC绕着点C逆时针旋转90°后,顶点A的对应点A1是否在抛物线l上?为什么?
(4)在x轴上方,抛物线l上是否存在一点P,使由点A,C,B,P构成的四边形为中心对称图形?若存在,求出点P的坐标;若不存在,请说明理由.
20.(8分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.
(1)求一次函数的表达式;
(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.
21.(8分)已知如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),B(﹣1,0),与y轴交于点C,连接AC,点P是直线AC上方的抛物线上一动点(异于点A,C),过点P作PE⊥x轴,垂足为E,PE与AC相交于点D,连接AP.
(1)求点C的坐标;
(2)求抛物线的解析式;
(3)①求直线AC的解析式;
②是否存在点P,使得△PAD的面积等于△DAE的面积,若存在,求出点P的坐标,若不存在,请说明理由.
22.(10分)定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.
(1)已知A(,1),B (1,﹣1),C (2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是 .
(2)设的解集在坐标系内所对应的点形成的图形为G.
①求G的面积;
②P(x,y)为G内(含边界)的一点,求3x+2y的取值范围;
(3)设的解集围成的图形为M,直接写出抛物线y=x2+2mx+3m2﹣m﹣1与图形M有交点时m的取值范围.
23.(10分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.
该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
24.(10分)用适当的方法解下列方程:
25.(12分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,点是射线上一动点(点不与点,重合),过点作垂直于轴,交直线于点,以直线为对称轴,将翻折,点的对称点落在轴上,以,为邻边作平行四边形.设点,与重叠部分的面积为.
(1)的长是__________,的长是___________(用含的式子表示);
(2)求关于的函数关系式,并写出自变量的取值范围.
26.(12分)已知抛物线y=mx2+(3–2m)x+m–2(m≠0)与x轴有两个不同的交点.
(1)求m的取值范围;
(2)判断点P(1,1)是否在抛物线上;
(3)当m=1时,求抛物线的顶点Q的坐标.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、A
4、C
5、A
6、D
7、B
8、C
9、D
10、B
11、A
12、A
二、填空题(每题4分,共24分)
13、1
14、(8081,1)
15、(0,0)
16、2.
17、
18、.
三、解答题(共78分)
19、(1)点B的坐标为(3,1);(2)y=x2﹣x﹣2;(3)点A1在抛物线上;理由见解析;(4)存在,点P(﹣2,1).
20、解:(3)一次函数的表达式为
(4)当销售单价定为4元时,商场可获得最大利润,最大利润是893元
(3)销售单价的范围是.
21、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.
22、(2):A、B、D;(2)①2;②﹣22≤2x+2y≤2;(2)0≤m≤.
23、 (1);(2).
24、,.
25、(1),;(2)
26、 (1)m<且m≠0;(2)点P(1,1)在抛物线上;(3)抛物线的顶点Q的坐标为(–,–).
相关试卷
这是一份安徽省安庆市望江县2023-2024学年七年级上学期期末数学试题(含答案),共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省安庆市九一六校2023-2024学年数学九上期末达标检测试题含答案,共8页。试卷主要包含了在中,,,则,如图,将Rt△ABC等内容,欢迎下载使用。
这是一份安徽省安庆市安庆九一六校2023-2024学年数学九年级第一学期期末达标测试试题含答案,共8页。试卷主要包含了正五边形的每个内角度数为,坡比常用来反映斜坡的倾斜程度等内容,欢迎下载使用。