安徽省合肥市包河区第48中学2023-2024学年数学九年级第一学期期末综合测试试题含答案
展开
这是一份安徽省合肥市包河区第48中学2023-2024学年数学九年级第一学期期末综合测试试题含答案,共7页。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图是一斜坡的横截面,某人沿斜坡上的点出发,走了13米到达处,此时他在铅直方向升高了5米.则该斜坡的坡度为( )
A.B.C.D.
2.如图,将一块含30°的直角三角板绕点A按顺时针方向旋转到△A1B1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )
A.30°B.60°C.90°D.120°
3.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为( )
A.(2,-4)B.(1,-4)C.(-1,4)D.(-4,2)
4.下列选项中,y是x的反比例函数的是( )
A.B.C.D.
5.在平面直角坐标系中,对于二次函数,下列说法中错误的是( )
A.的最小值为1
B.图象顶点坐标为,对称轴为直线
C.当时,的值随值的增大而增大,当时,的值随值的增大而减小
D.当时,的值随值的增大而减小,当时,的值随值的增大而增大
6.如图,AB为⊙O的直径,C、D是⊙O上的两点, ,弧AD=弧CD.则∠DAC等于( )
A.B.C.D.
7.运动会的领奖台可以近似的看成如图所示的立体图形,则它的左视图是( )
A.B.
C.D.
8.在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到1号跑道的概率是( )
A.B.C.D.
9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
10.张家口某小区要种植一个面积为3500m2的矩形草坪,设草坪的长为ym,宽为xm,则y关于x的函数解析式为( )
A.y=3500xB.x=3500yC.y=D.y=
11.若反比例函数图象上有两个点,设,则不经过第( )象限.
A.一B.二C.三D.四
12.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是( )
A.3和2 B.4和2 C.2和2 D.2和4
二、填空题(每题4分,共24分)
13.若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=______.
14.将抛物线先向右平移个单位,再向下平移个单位,所得到的抛物线的函数解析式是____.
15.如图,是的切线,为切点,,,点是上的一个动点,连结并延长,交的延长线于,则的最大值为_________
16.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2),若点A′(5,6),则A的坐标为______.
17.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.
18.在平面坐标系中,第1个正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作第2个正方形,延长交轴于点;作第3个正方形,…按这样的规律进行下去,第5个正方形的边长为__________.
三、解答题(共78分)
19.(8分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.
(1)小明选择补给站C(球王故里)的概率是多少?
(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.
20.(8分)(1)解方程:
(2)已知关于的方程无解,方程的一个根是.
①求和的值;
②求方程的另一个根.
21.(8分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.
(1)画树状图或列表求出各人获胜的概率。
(2)这个游戏公平吗?说说你的理由
22.(10分)(π﹣3.14)0+()﹣1﹣|﹣3|
23.(10分)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4,EM=6,求⊙O的半径.
24.(10分)在学习概率的课堂上,老师提出的问题:只有一张电影票,小丽和小芳想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小丽和小芳都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小丽先抽一张,小芳从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小丽看电影,否则小芳看电影.
(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;
(2)乙同学将甲同学的方案修改为只用2、3、5、7四张牌,抽取方式及规则不变,乙的方案公平吗?并说明理由.
25.(12分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.
(1)将绕着点顺时针旋转后得到,请在图中画出;
(2)若把线段旋转过程中所扫过的扇形图形围成一个圆锥的侧面,求该圆锥底面圆的半径(结果保留根号).
26.(12分)如图,在中,点在边上,.点在边上,.
(1)求证:;
(2)若,求的长.
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、A
4、C
5、C
6、C
7、D
8、B
9、B
10、C
11、C
12、A
二、填空题(每题4分,共24分)
13、1
14、
15、
16、 (2.5,3)
17、4π
18、
三、解答题(共78分)
19、(1 );(2)
20、(1),;(2)①,,②另一个根是1.
21、(1)小力获胜的概率为,小明获胜的概率;(2)不公平,理由见解析
22、2
23、
24、(1)甲同学的方案不公平.理由见解析;(2)公平,理由见解析.
25、(1)见解析;(2)
26、(1)证明见解析;(2).
相关试卷
这是一份安徽省合肥市包河区第48中学2023-2024学年数学九年级第一学期期末经典试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年安徽省合肥市包河区第48中学八上数学期末学业水平测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知A等内容,欢迎下载使用。
这是一份2023-2024学年安徽省合肥市包河区48中学数学八上期末学业水平测试试题含答案,共7页。试卷主要包含了下列各式中与是同类二次根式的是,如图,中的周长为等内容,欢迎下载使用。