安徽省怀远县联考2023-2024学年九上数学期末预测试题含答案
展开
这是一份安徽省怀远县联考2023-2024学年九上数学期末预测试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,若点在抛物线上,则的值,如图,在中,,,,则等于等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个B.3个C.4个D.5个
2.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是( ).
A.B.C.D.1<x<2
3.二次函数的部分图象如图所示,有以下结论:①;②;③;④,其中错误结论的个数是( )
A.1B.2C.3D.4
4.下列成语描述的事件为随机事件的是( )
A.守株待兔B.水中捞月C.瓮中捉鳖D.水涨船高
5.若点在抛物线上,则的值( )
A.2021B.2020C.2019D.2018
6.如图,AE是四边形ABCD外接圆⊙O的直径,AD=CD,∠B=50°,则∠DAE的度数为( )
A.70°B.65°C.60°D.55°
7.二次函数(,,为常数,且)中的与的部分对应值如下表:
以下结论:
①二次函数有最小值为;
②当时,随的增大而增大;
③二次函数的图象与轴只有一个交点;
④当时,.
其中正确的结论有( )个
A.B.C.D.
8.与相似,且面积比,则与的相似比为( )
A.B.C.D.
9.如图,在△ABC中,AD=AC,延长CD至B,使BD=CD,DE⊥BC交AB于点E,EC交AD于点F.下列四个结论:①EB=EC;②BC=2AD;③△ABC∽△FCD;④若AC=6,则DF=1.其中正确的个数有()
A.1B.2C.1D.4
10.如图,在中,,,,则等于( )
A.B.C.D.
11.如图,已知,,,的长为( )
A.4B.6C.8D.10
12.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为
A.B.C.D.
二、填空题(每题4分,共24分)
13.小亮同学想测量学校旗杆的高度,他在某一时刻测得米长的竹竿竖直放置时影长为米,同时测量旗杆的影长时由于影子不全落在地面上,他测得地面上的影长为米,留在墙上的影高为米,通过计算他得出旗杆的高度是___________米.
14.如图,四边形ABCD是边长为4的正方形,若AF=3,E为AB上一个动点,把△AEF沿着EF折叠,得到△PEF,若△BPE为直角三角形,则BP的长度为_____.
15.从0,1,2,3,4中任取两个不同的数,其乘积为0的概率是___________.
16.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形,点是母线的中点,一只蚂蚁从点出发沿圆锥的表面爬行到点处,则这只蚂蚁爬行的最短距离是_______cm.
17.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.
18.已知在反比例函数图象的任一分支上,都随的增大而增大,则的取值范围是______.
三、解答题(共78分)
19.(8分)某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入−成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
20.(8分)如图,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A城市150km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,120km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.732)
21.(8分)意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,1.
八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.
整理数据:
分析数据:
应用数据:
(1)由上表填空:a= ;b= ;c= ;d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?
(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.
22.(10分)京剧脸谱是京剧艺术独特的表现形式,现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率(图案为“红脸”的两张卡片分别记为、,图案为“黑脸”的卡片记为).
23.(10分)如图,在矩形的边上取一点,连接并延长和的延长线交于点,过点作的垂线与的延长线交于点,与交于点,连接.
(1)当且时,求的长;
(2)求证:;
(3)连接,求证:.
24.(10分)如图,已知中,,为上一点,以为直径作与相切于点,连接并延长交的延长线于点.
(1)求证:;
(2)若,求的长.
25.(12分)某校在向贫困地区捐书活动中全体师生积极捐书.为了解所捐书籍的种类,某同学对部分书籍进行了抽样调查,并根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:
(1)本次抽样调查的书籍有多少本?请通过计算补全条形统计图;
(2)求出图中表示科普类书籍的扇形圆心角度数;
(3)本次活动师生共捐书本,请估计有多少本文学类书籍?
26.(12分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)尺规作图:作出⊙O(不写作法与证明,保留作图痕迹);
(2)求证:BC为⊙O的切线.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、A
4、A
5、B
6、B
7、B
8、B
9、C
10、A
11、D
12、D
二、填空题(每题4分,共24分)
13、
14、2或.
15、
16、2
17、
18、
三、解答题(共78分)
19、(1)y=﹣2x+180;(2)W=﹣2x2+240x﹣5400;(3)当x=60时,W取得最大值,此时W=1.
20、计划修建的这条高速铁路穿越保护区,理由见解析
21、(1)11,10,78.5,81;(2)600人;(3)八年级学生总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).
22、抽出的两张卡片上的图案都是“红脸”的概率是.
23、(1);(2)见解析;(3)见解析
24、(1)见解析;(2)
25、(1)本次抽样调查的书籍有本;作图见解析(2)(3)估计有本文学类书籍
26、(1)作图见解析;(2)证明见解析.
售价x(元/千克)
40
50
60
销售量y(千克)
100
80
60
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
七年级
0
1
0
a
7
1
八年级
1
0
0
7
b
2
平均数
众数
中位数
七年级
78
75
c
八年级
78
d
80.5
相关试卷
这是一份安徽省阜阳市颍东区2023-2024学年九上数学期末预测试题含答案,共9页。
这是一份安徽省怀远县2023-2024学年九年级数学第一学期期末检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=ax2+bx+4,已知抛物线与x轴相交于点A,B,下列事件是必然事件的是,若,则下列各式一定成立的是等内容,欢迎下载使用。
这是一份2023-2024学年怀远县联考九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了在如图所示的象棋盘,点P在双曲线上,则k的值为等内容,欢迎下载使用。