安庆市重点中学2023-2024学年数学九上期末达标检测试题含答案
展开
这是一份安庆市重点中学2023-2024学年数学九上期末达标检测试题含答案,共7页。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,在平面直角坐标系中,菱形ABCD的顶点A(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上,若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为( )
A.15B.20C.25D.30
2.如图,空地上(空地足够大)有一段长为10m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m1.若设AD=xm,则可列方程( )
A.(60﹣)x=900B.(60﹣x)x=900C.(50﹣x)x=900D.(40﹣x)x=900
3.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是( )
A.先向左平移2个单位,再先向上平移1个单位
B.先向左平移2个单位,再先向下平移1个单位
C.先向右平移2个单位,再先向上平移1个单位
D.先向右平移2个单位,再先向下平移1个单位
4.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是( )
A.△ABC是等腰三角形
B.△ABC是等腰直角三角形
C.△ABC是直角三角形
D.△ABC是等边三角形
5.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )
A.y=﹣5(x+1)2﹣1B.y=﹣5(x﹣1)2﹣1C.y=﹣5(x+1)2+3D.y=﹣5(x﹣1)2+3
6.二次函数的图象如图所示,其对称轴为,有下列结论:①;②;③;④对任意的实数,都有,其中正确的是( )
A.①②B.①④C.②③D.②④
7.圆的面积公式S=πR2中,S与R之间的关系是( )
A.S是R的正比例函数B.S是R的一次函数
C.S是R的二次函数D.以上答案都不对
8.将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4( )
A.先向左平移3个单位,再向上平移4个单位B.先向左平移3个单位,再向下平移4个单位
C.先向右平移3个单位,再向上平移4个单位D.先向右平移3个单位,再向下平移4个单位
9.下列一元二次方程中,没有实数根的是( )
A.B.
C.D.
10.若关于x的一元二次方程的两个实数根分别为,那么抛物线的对称轴为直线( )
A.B.C.D.
11.已知抛物线的解析式为y=(x-2)2+1,则这条抛物线的顶点坐标是( ).
A.(﹣2,1) B.(2,1) C.(2,﹣1) D.(1,2)
12.如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:
①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤
正确的有( )
A.①②B.①④⑤C.①②④⑤D.①②③④⑤
二、填空题(每题4分,共24分)
13.若方程x2﹣2x﹣4=0的两个实数根为a,b,则 -a2 - b2的值为_________。
14.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为_______.
15.如图,路灯距离地面,身高的小明站在距离路灯底部(点)的点处,则小明在路灯下的影子长为_____.
16.如果,那么= .
17.已知中,,,,则的长为__________.
18.如图,AB是⊙O的直径,点C在AB 的延长线上, CD与⊙O相切于点D,若∠CDA=122°,则∠C=_______.
三、解答题(共78分)
19.(8分)利用公式法解方程:x2﹣x﹣3=1.
20.(8分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,1.
(1)这组数据的中位数是 ,众数是 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
21.(8分)如图,点D、O在△ABC的边AC上,以CD为直径的⊙O与边AB相切于点E,连结DE、OB,且DE∥OB.
(1)求证:BC是⊙O的切线.
(2)设OB与⊙O交于点F,连结EF,若AD=OD,DE=4,求弦EF的长.
22.(10分)平行四边形中,点为上一点,连接交对角线于点,点为上一点,于,且,点为的中点,连接;若.
(1)求的度数;
(2)求证:
23.(10分)如图,在中,弦垂直于直径,垂足为,连结,将沿翻转得到,直线与直线相交于点.
(1)求证:是的切线;
(2)若为的中点,①求证:四边形是菱形;②若,求的半径长.
24.(10分)如图①,在中,,,D是BC的中点.
小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:
(1)当点E在直线AD上时,如图②所示.
① ;②连接CE,直线CE与直线AB的位置关系是 .
(2)请在图③中画出,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.
(3)当点P在线段AD上运动时,求AE的最小值.
25.(12分)在学习概率的课堂上,老师提出的问题:只有一张电影票,小丽和小芳想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小丽和小芳都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小丽先抽一张,小芳从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小丽看电影,否则小芳看电影.
(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;
(2)乙同学将甲同学的方案修改为只用2、3、5、7四张牌,抽取方式及规则不变,乙的方案公平吗?并说明理由.
26.(12分)解方程:
(1)x2﹣4x+2=0;
(2)
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、B
5、A
6、B
7、C
8、A
9、A
10、B
11、B
12、C
二、填空题(每题4分,共24分)
13、-12
14、
15、4
16、
17、5或1
18、26°
三、解答题(共78分)
19、x1=,x2=.
20、(1)16,17;(2)14;(3)2.
21、(1)见解析;(2)1
22、(1)30° (2)证明见解析
23、(1)见解析;(2)①见解析,②1
24、(1)①50;②;(2);(3)AE的最小值.
25、(1)甲同学的方案不公平.理由见解析;(2)公平,理由见解析.
26、(1);(1)x1=﹣3,x1=1.
相关试卷
这是一份安徽省安庆市九一六校2023-2024学年数学九上期末达标检测试题含答案,共8页。试卷主要包含了在中,,,则,如图,将Rt△ABC等内容,欢迎下载使用。
这是一份漯河市重点中学2023-2024学年九上数学期末达标检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算中正确的是,如图,空地上等内容,欢迎下载使用。
这是一份甘孜市重点中学2023-2024学年九上数学期末达标检测试题含答案,共9页。试卷主要包含了答题时请按要求用笔,宽与长的比是等内容,欢迎下载使用。