山东省惠民县联考2023-2024学年数学九年级第一学期期末达标检测试题含答案
展开
这是一份山东省惠民县联考2023-2024学年数学九年级第一学期期末达标检测试题含答案,共7页。试卷主要包含了下列事件中,必然事件是,如图,在下列命题中,真命题是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.双曲线y=在第一、三象限内,则k的取值范围是( )
A.k>0B.k<0C.k>1D.k<1
2.如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是( )
A.6B.15C.24D.27
3.如图坐标系中,O(0,0),A(3,3),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则AC:AD的值是( )
A.1:2B.2:3C.6:7D.7:8
4.下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是( )
A.①B.②C.③D.④
5.已知x2-2x=8,则3x2-6x-18的值为( )
A.54 B.6 C.-10 D.-18
6.下列事件中,必然事件是( )
A.抛一枚硬币,正面朝上
B.打开电视频道,正在播放《今日视线》
C.射击运动员射击一次,命中10环
D.地球绕着太阳转
7.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是( )
A.5B.4C.3D.0
8.如图,把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是( )
A.4:5B.2:5C.:2D.:
9.小明同学发现自己一本书的宽与长之比是黄金比约为0.1.已知这本书的长为20cm,则它的宽约为( )
A.12.36cmB.13.6cmC.32.386cmD.7.64cm
10.在下列命题中,真命题是( )
A.相等的角是对顶角B.同位角相等
C.三角形的外角和是D.角平分线上的点到角的两边相等
11.如图,点D是等腰直角三角形ABC内一点,AB=AC,若将△ABD绕点A逆时针旋转到△ACE的位置,则∠AED的度数为( )
A.25°B.30°C.40°D.45°
12.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为( )
A.6mB.8mC.10mD.12m
二、填空题(每题4分,共24分)
13.把抛物线的图像向右平移个单位,再向下平移个单位,所得图像的解析式为,则的值为___________.
14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果CD=4,那么AD•BD的值是_____.
15.已知抛物线与轴交点的横坐标分别为3,1;与轴交点的纵坐标为6,则二次函数的关系式是____.
16.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)
17.如图,一辆小车沿着坡度为的斜坡从点A向上行驶了50米到点B处,则此时该小车离水平面的垂直高度为_____________.
18.用配方法解方程时,原方程可变形为 _________ .
三、解答题(共78分)
19.(8分)已知关于x的方程x2-6x+k=0的两根分别是x1、x2.
(1)求k的取值范围;
(2)当+ =3时,求k的值.
20.(8分)如图,在平行四边形中,点在边上,,连接交于点,则的面积与的面积之比为多少?
21.(8分)计算:;
22.(10分)在一个不透明的盒子里,装有四个分别标有数字2、3、4、6的乒乓球,它们的形状、大小、颜色、质地完全相同,耀华同学先从盒子里随机取出一个小球,记为数字x,不放回,再由洁玲同学随机取出另一个小球,记为数字y,
(1)用树状图或列表法表示出坐标(x,y)的所有可能出现的结果;
(2)求取出的坐标(x,y)对应的点落在反比例函数y=图象上的概率.
23.(10分)近年来,“在初中数学教学候总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果 绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:
n名学生对使用计算器影响计算能力的发展看法人数统计表
(1)求n的值;
(2)统计表中的m= ;
(3)估计该校1800名学生中认为“影响很大”的学生人数.
24.(10分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=的图象上,OA=1,OC=6,试求出正方形ADEF的边长.
25.(12分)化简:.
26.(12分)先化简,再求值:,其中.
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、B
4、D
5、B
6、D
7、C
8、A
9、A
10、C
11、D
12、C
二、填空题(每题4分,共24分)
13、
14、1
15、.
16、(答案不唯一)
17、2
18、
三、解答题(共78分)
19、(1)k≤9;(2)2
20、S△DFE:S△BFA=9:1
21、1
22、(1)见解析;(2)
23、(1)200;(2)1;(3)900.
24、1.
25、
26、原式=.
看法
没有影响
影响不大
影响很大
学生人数(人)
40
60
m